Page 156 - IJB-10-6
P. 156

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




            79.  Cooke ME, Rosenzweig DH. The rheology of direct   92.  Paxton  N,  Smolan  W,  Böck  T, Melchels  F,  Groll  J,  Jungst
               and suspended extrusion bioprinting.  APL Bioeng.   T. Proposal to assess printability of bioinks for extrusion-
               2021;5(1):011502.                                  based bioprinting and evaluation of rheological properties
               doi: 10.1063/5.0031475                             governing bioprintability. Biofabrication. 2017;9(4):044107.
                                                                  doi: 10.1088/1758-5090/aa8dd8
            80.  Ostwald  W.  Ueber  die  rechnerische  Darstellung  des
               Strukturgebietes  der  Viskosität.  Kolloid-Zeitschrift.   93.  Tuladhar S, Nelson C, Habib A. Rheological study of highly
               1929;47(2):176-187.                                thixotropic hydrogels for 3D bio-printing processes. In:
               doi: 10.1007/BF01496959                            Ghate A, Krishnaiyer K, Paynabar K, eds. Proceedings of the
                                                                  2021 IISE Annual Conference; 2021.
            81.  de Waele A. Viscometry and plastometry. J Oil and Colour
               Chemists’ Assoc. 1923;6(38):33-88.              94.  Diañez I, Gallegos C, Brito-de la Fuente E, et al. 3D printing
                                                                  in situ gelification of κ-carrageenan solutions: effect of
            82.  Carreau PiJ. Rheological equations from molecular network
               theories. Trans Soc Rheol. 1972;16(1):99-127.      printing variables  on the  rheological  response.  Food
               doi: 10.1122/1.549276.                             Hydrocoll. 2019;87:321-330.
                                                                  doi: 10.1016/j.foodhyd.2018.08.010
            83.  Yasuda K. Investigation of the Analogies Berween Viscometric   95.  Herrada-Manchón H, Celada L, Rodríguez-González D,
               and Linear Viscoelastic Properties of Polystyrene Fluids.   Alejandro Fernández M, Aguilar E, Chiara  MD. Three-
               Massachusetts Institute of Technology; 1979.       dimensional bioprinted cancer models: A powerful
               http://hdl.handle.net/1721.1/16043
                                                                  platform for investigating tunneling nanotube-like cell
            84.  Cross  MM.  Rheology  of  non-Newtonian  fluids:  a  new   structures in complex microenvironments. Mater Sci Eng: C.
               flow equation for pseudoplastic systems.  J Colloid Sci.   2021;128:112357.
               1965;20(5):417-437.                                doi: 10.1016/j.msec.2021.112357
               doi: 10.1016/0095-8522(65)90022-X
                                                               96.  Chen  Y,  Wang  Y,  Yang  Q,  et  al.  A  novel  thixotropic
            85.  Herschel VWH, Bulkley R. Ronsistenzmessungen yon (   magnesium phosphate-based bioink with excellent
               ummi-BenzollGsungen). Colloid Polym Sci. 1926;39:291-300.  printability for application in 3D printing. J Mater Chem B.
               doi: 10.1007/BF01432034                            2018;6(27):4502-4513.
                                                                  doi: 10.1039/C8TB01196F
            86.  Nelson AZ, Schweizer KS, Rauzan BM, Nuzzo RG, Vermant
               J, Ewoldt RH. Designing and transforming yield-stress   97.  Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies
               fluids. Curr Opin Solid State Mater Sci. 2019;23(5):100758.  and molecular design  criteria for  3D printable hydrogels.
               doi: 10.1016/j.cossms.2019.06.002                  Chem Rev. 2016;116(3):1496-1539.
                                                                  doi: 10.1021/acs.chemrev.5b00303
            87.  Pereira RF, Sousa A, Barrias CC, Bártolo PJ, Granja PL.
               A single-component hydrogel bioink for bioprinting of   98.  Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior,
               bioengineered 3D constructs for dermal tissue engineering.   thixotropy and dynamical viscoelasticity of sodium alginate
               Mater Horiz. 2018;5(6):1100-1111.                  aqueous solutions. Food Hydrocoll. 2014;38:119-128.
               doi: 10.1039/C8MH00525G                            doi: 10.1016/j.foodhyd.2013.11.016
            88.  Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion   99.  Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D
               bioprinting: Recent progress, challenges, and future   printing of extended-release tablets of theophylline using
               opportunities.  Bioprinting. 2021;21(November 2020):   hydroxypropyl methylcellulose (HPMC) hydrogels.  Int J
               e00116.                                            Pharm. 2020;591:119983.
               doi: 10.1016/j.bprint.2020.e00116                  doi: 10.1016/j.ijpharm.2020.119983
            89.  Nair K, Gandhi M, Khalil S, et al. Characterization of   100. Sombatsompop N, Sergsiri S. Die swell ratio of polystyrene
               cell viability during bioprinting processes.  Biotechnol J.   melt from an electro-magnetized capillary die in an extrusion
               2009;4(8):1168-1177.                               rheometer: effects of barrel diameter, shear rate and die
               doi: 10.1002/biot.200900004                        temperature. Polym Adv Technol. 2004;15(8):472-480.
            90.  Jiang Y, Zhou J, Feng C, Shi H, Zhao G, Bian Y. Rheological      doi: 10.1002/pat.490
               behavior, 3D printability and the formation of scaffolds   101. Michal Bathory. Modelling and analysis  of flows of
               with  cellulose  nanocrystals/gelatin  hydrogels.  J Mater Sci.   viscoelastic fluids Beyond the Navier–Stokes equations. Res
               2020;55(33):15709-15725.                           Outreach. 2022;(132).
               doi: 10.1007/s10853-020-05128-x                    doi: 10.32907/RO-132-3331282634
            91.  Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and   102. Boger DV, Binnington RJ. Experimental removal of the re‐
               optimizing 3D bioprinting capabilities using complementary   entrant corner singularity in tubular entry flows.  J Rheol.
               network bioinks. Sci Adv. 2020;6(38):eabc5529.     1994;38(2):333-349.
               doi: 10.1126/sciadv.abc5529                        doi: 10.1122/1.550517



            Volume 10 Issue 6 (2024)                       148                                doi: 10.36922/ijb.3973
   151   152   153   154   155   156   157   158   159   160   161