Page 156 - IJB-10-6
P. 156
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
79. Cooke ME, Rosenzweig DH. The rheology of direct 92. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst
and suspended extrusion bioprinting. APL Bioeng. T. Proposal to assess printability of bioinks for extrusion-
2021;5(1):011502. based bioprinting and evaluation of rheological properties
doi: 10.1063/5.0031475 governing bioprintability. Biofabrication. 2017;9(4):044107.
doi: 10.1088/1758-5090/aa8dd8
80. Ostwald W. Ueber die rechnerische Darstellung des
Strukturgebietes der Viskosität. Kolloid-Zeitschrift. 93. Tuladhar S, Nelson C, Habib A. Rheological study of highly
1929;47(2):176-187. thixotropic hydrogels for 3D bio-printing processes. In:
doi: 10.1007/BF01496959 Ghate A, Krishnaiyer K, Paynabar K, eds. Proceedings of the
2021 IISE Annual Conference; 2021.
81. de Waele A. Viscometry and plastometry. J Oil and Colour
Chemists’ Assoc. 1923;6(38):33-88. 94. Diañez I, Gallegos C, Brito-de la Fuente E, et al. 3D printing
in situ gelification of κ-carrageenan solutions: effect of
82. Carreau PiJ. Rheological equations from molecular network
theories. Trans Soc Rheol. 1972;16(1):99-127. printing variables on the rheological response. Food
doi: 10.1122/1.549276. Hydrocoll. 2019;87:321-330.
doi: 10.1016/j.foodhyd.2018.08.010
83. Yasuda K. Investigation of the Analogies Berween Viscometric 95. Herrada-Manchón H, Celada L, Rodríguez-González D,
and Linear Viscoelastic Properties of Polystyrene Fluids. Alejandro Fernández M, Aguilar E, Chiara MD. Three-
Massachusetts Institute of Technology; 1979. dimensional bioprinted cancer models: A powerful
http://hdl.handle.net/1721.1/16043
platform for investigating tunneling nanotube-like cell
84. Cross MM. Rheology of non-Newtonian fluids: a new structures in complex microenvironments. Mater Sci Eng: C.
flow equation for pseudoplastic systems. J Colloid Sci. 2021;128:112357.
1965;20(5):417-437. doi: 10.1016/j.msec.2021.112357
doi: 10.1016/0095-8522(65)90022-X
96. Chen Y, Wang Y, Yang Q, et al. A novel thixotropic
85. Herschel VWH, Bulkley R. Ronsistenzmessungen yon ( magnesium phosphate-based bioink with excellent
ummi-BenzollGsungen). Colloid Polym Sci. 1926;39:291-300. printability for application in 3D printing. J Mater Chem B.
doi: 10.1007/BF01432034 2018;6(27):4502-4513.
doi: 10.1039/C8TB01196F
86. Nelson AZ, Schweizer KS, Rauzan BM, Nuzzo RG, Vermant
J, Ewoldt RH. Designing and transforming yield-stress 97. Jungst T, Smolan W, Schacht K, Scheibel T, Groll J. Strategies
fluids. Curr Opin Solid State Mater Sci. 2019;23(5):100758. and molecular design criteria for 3D printable hydrogels.
doi: 10.1016/j.cossms.2019.06.002 Chem Rev. 2016;116(3):1496-1539.
doi: 10.1021/acs.chemrev.5b00303
87. Pereira RF, Sousa A, Barrias CC, Bártolo PJ, Granja PL.
A single-component hydrogel bioink for bioprinting of 98. Ma J, Lin Y, Chen X, Zhao B, Zhang J. Flow behavior,
bioengineered 3D constructs for dermal tissue engineering. thixotropy and dynamical viscoelasticity of sodium alginate
Mater Horiz. 2018;5(6):1100-1111. aqueous solutions. Food Hydrocoll. 2014;38:119-128.
doi: 10.1039/C8MH00525G doi: 10.1016/j.foodhyd.2013.11.016
88. Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion 99. Cheng Y, Qin H, Acevedo NC, Jiang X, Shi X. 3D
bioprinting: Recent progress, challenges, and future printing of extended-release tablets of theophylline using
opportunities. Bioprinting. 2021;21(November 2020): hydroxypropyl methylcellulose (HPMC) hydrogels. Int J
e00116. Pharm. 2020;591:119983.
doi: 10.1016/j.bprint.2020.e00116 doi: 10.1016/j.ijpharm.2020.119983
89. Nair K, Gandhi M, Khalil S, et al. Characterization of 100. Sombatsompop N, Sergsiri S. Die swell ratio of polystyrene
cell viability during bioprinting processes. Biotechnol J. melt from an electro-magnetized capillary die in an extrusion
2009;4(8):1168-1177. rheometer: effects of barrel diameter, shear rate and die
doi: 10.1002/biot.200900004 temperature. Polym Adv Technol. 2004;15(8):472-480.
90. Jiang Y, Zhou J, Feng C, Shi H, Zhao G, Bian Y. Rheological doi: 10.1002/pat.490
behavior, 3D printability and the formation of scaffolds 101. Michal Bathory. Modelling and analysis of flows of
with cellulose nanocrystals/gelatin hydrogels. J Mater Sci. viscoelastic fluids Beyond the Navier–Stokes equations. Res
2020;55(33):15709-15725. Outreach. 2022;(132).
doi: 10.1007/s10853-020-05128-x doi: 10.32907/RO-132-3331282634
91. Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and 102. Boger DV, Binnington RJ. Experimental removal of the re‐
optimizing 3D bioprinting capabilities using complementary entrant corner singularity in tubular entry flows. J Rheol.
network bioinks. Sci Adv. 2020;6(38):eabc5529. 1994;38(2):333-349.
doi: 10.1126/sciadv.abc5529 doi: 10.1122/1.550517
Volume 10 Issue 6 (2024) 148 doi: 10.36922/ijb.3973

