Page 158 - IJB-10-6
P. 158
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
3D printed alginate scaffolds: experimental and numerical 138. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-
approaches. J Mech Behav Biomed Mater. 2018;80:111-118. Espinosa S. Bioprinting vasculature: materials, cells and
doi: 10.1016/j.jmbbm.2018.01.034 emergent techniques. Materials (Basel). 2019;12(17):2701.
doi: 10.3390/ma12172701
127. Sarker Md, Izadifar M, Schreyer D, Chen X. Influence of
ionic crosslinkers (Ca 2+ /Ba 2+ /Zn 2+ ) on the mechanical 139. Cameron T, Naseri E, MacCallum B, Ahmadi A.
and biological properties of 3D Bioplotted Hydrogel Development of a disposable single-nozzle printhead for
Scaffolds. J Biomater Sci Polym Ed. 2018;29(10):1126-1154. 3D bioprinting of continuous multi-material constructs.
doi: 10.1080/09205063.2018.1433420 Micromachines (Basel). 2020;11(5):459.
doi: 10.3390/mi11050459
128. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue
analogues with decellularized extracellular matrix bioink. 140. Nelson C, Tuladhar S, Habib A. Designing an interchangeable
Nat Commun. 2014;5(1):3935. multi-material nozzle system for the three-dimensional
doi: 10.1038/ncomms4935 bioprinting process. J Med Device. 2023;17(2):1-8.
doi: 10.1115/1.4055249
129. Chang R, Nam J, Sun W. Effects of dispensing pressure
and nozzle diameter on cell survival from solid freeform 141. Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo
fabrication-based direct cell writing. Tissue Eng Part A. A, Vázquez-Lasa B, Román JS. 3D printing of a reactive
2008;14(1):41-48. hydrogel bio-ink using a static mixing tool. Polymers (Basel).
doi: 10.1089/ten.a.2007.0004 2020;12(9):1-17.
doi: 10.3390/polym12091986
130. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and
bioprinting technologies to make heterogeneous 142. Rocca M, Fragasso A, Liu W, Heinrich MA, Zhang YS.
and biomimetic tissue constructs. Mater Today Bio. Embedded multimaterial extrusion bioprinting. SLAS
2019;1:100008. Technol. 2018;23(2):154-163.
doi: 10.1016/j.mtbio.2019.100008 doi: 10.1177/2472630317742071
131. Ozbolat IT, Chen H, Yu Y. Development of “Multi-arm 143. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous
Bioprinter” for hybrid biofabrication of tissue engineering multimaterial extrusion bioprinting. Adv Mater.
constructs. Robot Comput Integr Manuf. 2014;30(3):295-304. 2017;29(3):10.1002/adma.201604630.
doi: 10.1016/j.rcim.2013.10.005 doi: 10.1002/adma.201604630
132. Hong S, Kim JS, Jung B, Won C, Hwang C. Coaxial 144. Puryear III JR, Yoon JK, Kim Y. Advanced fabrication
bioprinting of cell-laden vascular constructs using a gelatin- techniques of microengineered physiological systems.
tyramine bioink. Biomater Sci. 2019;7(11):4578-4587. Micromachines (Basel). 2020;11(8):730.
doi: 10.1039/c8bm00618k doi: 10.3390/mi11080730
133. Gao G, Lee JH, Jang J, et al. Tissue Engineered Bio-Blood- 145. Kantak C, Beyer S, Trau D. A novel microfluidic droplet
Vessels Constructed Using a Tissue-Specific Bioink and manipulation method for fabrication of reverse-phase two
3D Coaxial Cell Printing Technique: A Novel Therapy for layer layer-by-layer protein microcapsules. In: Zengerle R,
Ischemic Disease. Adv Funct Mater. 2017;27(33):1700798. eds. 17th Int. Conf. on Miniaturized Systems for Chemistry
doi: 10.1002/adfm.201700798 and Life Sciences (MicroTAS 2013) ; 2013.
134. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Directly coaxial 146. Shin SR, Kilic T, Zhang YS, et al. Label‐free and regenerative
3D bioprinting of large-scale vascularized tissue constructs. electrochemical microfluidic biosensors for continual
Biofabrication. 2020;12(3):035014. monitoring of cell secretomes. Adv Sci. 2017;4(5):1600522.
doi: 10.1088/1758-5090/ab7e76 doi: 10.1002/advs.201600522
135. Millik SC, Dostie AM, Karis DG, et al. 3D printed coaxial 147. Bsoul A, Pan S, Cretu E, Stoeber B, Walus K. Design,
nozzles for the extrusion of hydrogel tubes toward modeling microfabrication, and characterization of a moulded PDMS/
vascular endothelium. Biofabrication. 2019;11(4):45009. SU-8 inkjet dispenser for a Lab-on-a-Printer platform
doi: 10.1088/1758-5090/ab2b4d technology with disposable microfluidic chip. Lab Chip.
2016;16(17):3351-3361.
136. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted
3D bioprinting with built-in microchannels for nutrients doi: 10.1039/C6LC00636A
delivery. Biomaterials. 2015;61:203-215. 148. Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion
doi: 10.1016/j.biomaterials.2015.05.031 and microfluidic-based bioprinting to fabricate biomimetic
tissues and organs. Adv Mater Technol. 2020;5(8):1901044.
137. Mistry P, Aied A, Alexander M, Shakesheff K, Bennett
A, Yang J. Bioprinting using mechanically robust core– doi: 10.1002/admt.201901044
shell cell-laden hydrogel strands. Macromol Biosci. 149. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in
2017;17(6)1600472. situ formation of planar biomaterials and tissues. Lab Chip.
doi: 10.1002/mabi.201600472 2018;18(10):1440-1451.
Volume 10 Issue 6 (2024) 150 doi: 10.36922/ijb.3973

