Page 158 - IJB-10-6
P. 158

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




               3D printed alginate scaffolds: experimental and numerical   138. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-
               approaches. J Mech Behav Biomed Mater. 2018;80:111-118.  Espinosa S. Bioprinting vasculature: materials, cells and
               doi: 10.1016/j.jmbbm.2018.01.034                   emergent techniques. Materials (Basel). 2019;12(17):2701.
                                                                  doi: 10.3390/ma12172701
            127. Sarker Md, Izadifar M, Schreyer D, Chen X. Influence of
               ionic crosslinkers (Ca 2+ /Ba 2+ /Zn 2+ ) on the mechanical   139. Cameron T, Naseri E, MacCallum B, Ahmadi A.
               and biological properties of 3D Bioplotted Hydrogel   Development of a disposable single-nozzle printhead for
               Scaffolds. J Biomater Sci Polym Ed. 2018;29(10):1126-1154.  3D  bioprinting  of  continuous  multi-material  constructs.
               doi: 10.1080/09205063.2018.1433420                 Micromachines (Basel). 2020;11(5):459.
                                                                  doi:  10.3390/mi11050459
            128. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue
               analogues with decellularized extracellular matrix bioink.   140. Nelson C, Tuladhar S, Habib A. Designing an interchangeable
               Nat Commun. 2014;5(1):3935.                        multi-material  nozzle  system  for  the  three-dimensional
               doi: 10.1038/ncomms4935                            bioprinting process. J Med Device. 2023;17(2):1-8.
                                                                  doi: 10.1115/1.4055249
            129. Chang R, Nam J, Sun W. Effects of dispensing pressure
               and nozzle diameter on cell survival from solid freeform   141. Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo
               fabrication-based direct cell writing.  Tissue  Eng  Part A.   A, Vázquez-Lasa B, Román JS. 3D printing of a reactive
               2008;14(1):41-48.                                  hydrogel bio-ink using a static mixing tool. Polymers (Basel).
               doi:  10.1089/ten.a.2007.0004                      2020;12(9):1-17.
                                                                  doi: 10.3390/polym12091986
            130. Ashammakhi  N,  Ahadian S,  Xu C,  et  al. Bioinks  and
               bioprinting  technologies  to  make  heterogeneous  142. Rocca M, Fragasso A, Liu W, Heinrich MA, Zhang YS.
               and biomimetic tissue constructs.  Mater Today Bio.   Embedded multimaterial extrusion bioprinting.  SLAS
               2019;1:100008.                                     Technol. 2018;23(2):154-163.
               doi: 10.1016/j.mtbio.2019.100008                   doi:  10.1177/2472630317742071
            131. Ozbolat IT, Chen H, Yu Y. Development of “Multi-arm   143. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous
               Bioprinter” for hybrid biofabrication of tissue engineering   multimaterial  extrusion  bioprinting.  Adv  Mater.
               constructs. Robot Comput Integr Manuf. 2014;30(3):295-304.  2017;29(3):10.1002/adma.201604630.
               doi: 10.1016/j.rcim.2013.10.005                    doi: 10.1002/adma.201604630
            132. Hong S, Kim JS, Jung B, Won C, Hwang C. Coaxial   144. Puryear III JR, Yoon JK, Kim Y. Advanced fabrication
               bioprinting of cell-laden vascular constructs using a gelatin-  techniques of microengineered physiological systems.
               tyramine bioink. Biomater Sci. 2019;7(11):4578-4587.  Micromachines (Basel). 2020;11(8):730.
               doi: 10.1039/c8bm00618k                            doi: 10.3390/mi11080730
            133. Gao G, Lee JH, Jang J, et al. Tissue Engineered Bio-Blood-  145. Kantak C, Beyer S, Trau D. A novel microfluidic droplet
               Vessels Constructed Using a Tissue-Specific Bioink and   manipulation method for fabrication of reverse-phase two
               3D Coaxial Cell Printing Technique: A Novel Therapy for   layer layer-by-layer protein microcapsules. In: Zengerle R,
               Ischemic Disease. Adv Funct Mater. 2017;27(33):1700798.  eds. 17th Int. Conf. on Miniaturized Systems for Chemistry
               doi: 10.1002/adfm.201700798                        and Life Sciences (MicroTAS 2013) ; 2013.
            134. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Directly coaxial   146. Shin SR, Kilic T, Zhang YS, et al. Label‐free and regenerative
               3D bioprinting of large-scale vascularized tissue constructs.   electrochemical microfluidic biosensors for continual
               Biofabrication. 2020;12(3):035014.                 monitoring of cell secretomes. Adv Sci. 2017;4(5):1600522.
               doi: 10.1088/1758-5090/ab7e76                      doi: 10.1002/advs.201600522
            135. Millik SC, Dostie AM, Karis DG, et al. 3D printed coaxial   147. Bsoul  A,  Pan  S,  Cretu  E,  Stoeber  B,  Walus  K.  Design,
               nozzles for the extrusion of hydrogel tubes toward modeling   microfabrication, and characterization of a moulded PDMS/
               vascular endothelium. Biofabrication. 2019;11(4):45009.  SU-8 inkjet dispenser for a Lab-on-a-Printer platform
               doi: 10.1088/1758-5090/ab2b4d                      technology with disposable microfluidic chip.  Lab  Chip.
                                                                  2016;16(17):3351-3361.
            136. Gao Q, He Y, Fu JZ, Liu A, Ma L. Coaxial nozzle-assisted
               3D bioprinting with built-in microchannels for nutrients      doi: 10.1039/C6LC00636A
               delivery. Biomaterials. 2015;61:203-215.        148. Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion
               doi: 10.1016/j.biomaterials.2015.05.031            and microfluidic-based bioprinting to fabricate biomimetic
                                                                  tissues and organs. Adv Mater Technol. 2020;5(8):1901044.
            137. Mistry P, Aied A, Alexander M, Shakesheff K, Bennett
               A, Yang J. Bioprinting using mechanically robust core–     doi: 10.1002/admt.201901044
               shell cell-laden hydrogel strands.  Macromol Biosci.   149. Hakimi N, Cheng R, Leng L, et al. Handheld skin printer: in
               2017;17(6)1600472.                                 situ formation of planar biomaterials and tissues. Lab Chip.
               doi:  10.1002/mabi.201600472                       2018;18(10):1440-1451.



            Volume 10 Issue 6 (2024)                       150                                doi: 10.36922/ijb.3973
   153   154   155   156   157   158   159   160   161   162   163