Page 155 - IJB-10-6
P. 155

International Journal of Bioprinting                                 Fluid mechanics of extrusion bioprinting




            52. Clasen C, Entov V, Bico J, McKinley GH. `Gobbling Drops´ :   66.  Ning L, Chen X. A brief review of extrusion-based tissue
               the jetting / dripping transition in flows of polymeric liquids.   scaffold bio-printing. Biotechnol J. 2017;12(8):1200-1210.
               J Fluid Mech. 2009;636:5-40.                       doi: 10.1002/biot.201600671
               doi: 10.1017/S0022112009008143
                                                               67.  Bae YB, Jang HK, Shin TH, et al. Microfluidic assessment
            53.  Clanet C, Lasheras JC. Transition from dripping to jetting.    of mechanical cell damage by extensional stress. Lab Chip.
               J Fluid Mech. 1999;383:307-326.                    2016;16(1):96-103.
               doi: 10.1017/S0022112098004066                     doi: 10.1039/C5LC01006C
            54.  Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein.   68.  Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC.
               Fundamentals of Fluid Mechanics. 8th ed. Wiley; 2018.  Improving viability of stem cells during syringe needle flow
                                                                  through the design of hydrogel cell carriers. Tissue Eng Part
            55.  Liliang Ouyang. 3D bioprinting of thermal-sensitive bioink.   A. 2012;18(7-8):806-815.
               In: Study on Microextrusion-Based 3D Bioprinting and      doi: 10.1089/ten.tea.2011.0391
               Bioink Crosslinking Mechanisms. Springer; 2019.
                                                               69.  Down LA, Papavassiliou DV, O’Rear EA. Significance of
            56.  Savart F. M’emoire sur la constitution des veines liquides   extensional stresses to red blood cell lysis in a shearing flow.
               lanc’ees par des ori ces circulaires en mince paroi. Ann Chim   Ann Biomed Eng. 2011;39(6):1632-1642.
               (Paris). 1833;53:337-386.                          doi: 10.1007/s10439-011-0262-0
            57.  Plateau J. Statique Expe’rimentale et The’orique des Liquides.   70.  Byron Bird R, Stewart WE, Lightfoot EN.  Transport
               In: Gauthier-Villars et Cie; 1873.                 Phenomena. 2nd ed. Wiley; 2009.
            58.  Lord R. Investigations in capillarity: the size of drops. - The   71.  Cogswell FN. Measuring the extensional rheology of
               liberation of gas from supersaturated solutions. - Colliding   polymer melts. Trans Soc Rheol. 1972;16(3):383-403.
               jets. - The tension of contaminated water-surfaces. Curious      doi: 10.1122/1.549257
               observation. Philos Magaz J Sci. 1899;48(293):321-337.
                                                               72.  Mitsoulis E, Hatzikiriakos SG, Christodoulou K,
            59.  Chen XB, Ke H. Effects of fluid properties on dispensing   Vlassopoulos  D.  Sensitivity  analysis  of  the  Bagley
               processes for electronics packaging.  IEEE Trans Electron   correction to shear and extensional rheology.  Rheol Acta.
               Pack Manuf. 2006;29(2):75-82.                      1998;37(5):438-448.
               doi: 10.1109/TEPM.2006.874964                      doi: 10.1007/s003970050131
            60.  De Maria C, Vozzi G, Moroni L. Multimaterial,   73.  Han S, Kim CM, Jin S, Kim TY. Study of the process-induced
               heterogeneous,  and  multicellular  three-dimensional  cell damage in forced extrusion bioprinting. Biofabrication.
               bioprinting. MRS Bull. 2017;42(8):578-584.         2021;13(3):035048.
               doi: 10.1557/mrs.2017.165                          doi: 10.1088/1758-5090/ac0415
            61.  You F, Wu X, Zhu N, Lei M, Eames BF, Chen X. 3D printing   74.  Chirianni F, Vairo G, Marino M. Development of process
               of porous cell-laden hydrogel constructs for potential   design tools for extrusion-based bioprinting: From
               applications in cartilage tissue engineering. ACS Biomater   numerical  simulations  to  nomograms  through  reduced-
               Sci Eng. 2016;2(7).                                order modeling.  Comput  Methods  Appl  Mech  Eng.
               doi: 10.1021/acsbiomaterials.6b00258               2024;419:116685.
            62.  Ning L, Sun H, Lelong T, et al. 3D bioprinting of scaffolds      doi: 10.1016/j.cma.2023.116685
               with living Schwann cells for potential nerve tissue   75.  Li M, Tian X, Zhu N, Schreyer DJ, Chen X. Modeling
               engineering applications. Biofabrication. 2018;10(3):035014.  process-induced cell damage in the biodispensing process.
               doi:  10.1088/1758-5090/aacd30                     Tissue Eng Part C Methods. 2010;16(3):533-542.
            63.  Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization      doi: 10.1089/ten.tec.2009.0178
               of cell damage and proliferative ability during and after   76.  Li M, Tian X, Schreyer DJ, Chen X. Effect of needle
               bioprinting. ACS Biomater Sci Eng. 2018;4(11):3906-3918.  geometry on flow rate and cell damage in the dispensing-
               doi:  10.1021/acsbiomaterials.8b00714              based   biofabrication  process.  Biotechnol  Prog.
                                                                  2011;27(6):1777-1784.
            64.  Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage,
               viability, and functionality during 3D bioprinting. Mil Med      doi: 10.1002/btpr.679
               Res. 2022;9(1):1-15.                            77.  Chhabra  RP, Richardson  JF.  Non-Newtonian Dlow and
               doi: 10.1186/s40779-022-00429-5                    Applied Rheology. Oxford, UK: Butterworth-Heinemann
            65.  Fakhruddin K, Hamzah MSA, Razak SIA. Effects of   2nd ed.; 2008.
               extrusion  pressure  and  printing  speed  of  3D  bioprinted   doi: 10.1016/B978-0-7506-8532-0.X0001-7
               construct on the fibroblast cells viability. IOP Conf Ser Mater   78.  Byron  Bird R,  Robert C,  Armstrong  OH.  Dynamics of
               Sci Eng. 2018;440(1):012042.                       Polymeric Liquids. 2nd ed. John Wiley & Sons; 1987.
               doi: 10.1088/1757-899X/440/1/012042                doi: 10.1002/aic.690340623


            Volume 10 Issue 6 (2024)                       147                                doi: 10.36922/ijb.3973
   150   151   152   153   154   155   156   157   158   159   160