Page 155 - IJB-10-6
P. 155
International Journal of Bioprinting Fluid mechanics of extrusion bioprinting
52. Clasen C, Entov V, Bico J, McKinley GH. `Gobbling Drops´ : 66. Ning L, Chen X. A brief review of extrusion-based tissue
the jetting / dripping transition in flows of polymeric liquids. scaffold bio-printing. Biotechnol J. 2017;12(8):1200-1210.
J Fluid Mech. 2009;636:5-40. doi: 10.1002/biot.201600671
doi: 10.1017/S0022112009008143
67. Bae YB, Jang HK, Shin TH, et al. Microfluidic assessment
53. Clanet C, Lasheras JC. Transition from dripping to jetting. of mechanical cell damage by extensional stress. Lab Chip.
J Fluid Mech. 1999;383:307-326. 2016;16(1):96-103.
doi: 10.1017/S0022112098004066 doi: 10.1039/C5LC01006C
54. Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein. 68. Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC.
Fundamentals of Fluid Mechanics. 8th ed. Wiley; 2018. Improving viability of stem cells during syringe needle flow
through the design of hydrogel cell carriers. Tissue Eng Part
55. Liliang Ouyang. 3D bioprinting of thermal-sensitive bioink. A. 2012;18(7-8):806-815.
In: Study on Microextrusion-Based 3D Bioprinting and doi: 10.1089/ten.tea.2011.0391
Bioink Crosslinking Mechanisms. Springer; 2019.
69. Down LA, Papavassiliou DV, O’Rear EA. Significance of
56. Savart F. M’emoire sur la constitution des veines liquides extensional stresses to red blood cell lysis in a shearing flow.
lanc’ees par des ori ces circulaires en mince paroi. Ann Chim Ann Biomed Eng. 2011;39(6):1632-1642.
(Paris). 1833;53:337-386. doi: 10.1007/s10439-011-0262-0
57. Plateau J. Statique Expe’rimentale et The’orique des Liquides. 70. Byron Bird R, Stewart WE, Lightfoot EN. Transport
In: Gauthier-Villars et Cie; 1873. Phenomena. 2nd ed. Wiley; 2009.
58. Lord R. Investigations in capillarity: the size of drops. - The 71. Cogswell FN. Measuring the extensional rheology of
liberation of gas from supersaturated solutions. - Colliding polymer melts. Trans Soc Rheol. 1972;16(3):383-403.
jets. - The tension of contaminated water-surfaces. Curious doi: 10.1122/1.549257
observation. Philos Magaz J Sci. 1899;48(293):321-337.
72. Mitsoulis E, Hatzikiriakos SG, Christodoulou K,
59. Chen XB, Ke H. Effects of fluid properties on dispensing Vlassopoulos D. Sensitivity analysis of the Bagley
processes for electronics packaging. IEEE Trans Electron correction to shear and extensional rheology. Rheol Acta.
Pack Manuf. 2006;29(2):75-82. 1998;37(5):438-448.
doi: 10.1109/TEPM.2006.874964 doi: 10.1007/s003970050131
60. De Maria C, Vozzi G, Moroni L. Multimaterial, 73. Han S, Kim CM, Jin S, Kim TY. Study of the process-induced
heterogeneous, and multicellular three-dimensional cell damage in forced extrusion bioprinting. Biofabrication.
bioprinting. MRS Bull. 2017;42(8):578-584. 2021;13(3):035048.
doi: 10.1557/mrs.2017.165 doi: 10.1088/1758-5090/ac0415
61. You F, Wu X, Zhu N, Lei M, Eames BF, Chen X. 3D printing 74. Chirianni F, Vairo G, Marino M. Development of process
of porous cell-laden hydrogel constructs for potential design tools for extrusion-based bioprinting: From
applications in cartilage tissue engineering. ACS Biomater numerical simulations to nomograms through reduced-
Sci Eng. 2016;2(7). order modeling. Comput Methods Appl Mech Eng.
doi: 10.1021/acsbiomaterials.6b00258 2024;419:116685.
62. Ning L, Sun H, Lelong T, et al. 3D bioprinting of scaffolds doi: 10.1016/j.cma.2023.116685
with living Schwann cells for potential nerve tissue 75. Li M, Tian X, Zhu N, Schreyer DJ, Chen X. Modeling
engineering applications. Biofabrication. 2018;10(3):035014. process-induced cell damage in the biodispensing process.
doi: 10.1088/1758-5090/aacd30 Tissue Eng Part C Methods. 2010;16(3):533-542.
63. Ning L, Betancourt N, Schreyer DJ, Chen X. Characterization doi: 10.1089/ten.tec.2009.0178
of cell damage and proliferative ability during and after 76. Li M, Tian X, Schreyer DJ, Chen X. Effect of needle
bioprinting. ACS Biomater Sci Eng. 2018;4(11):3906-3918. geometry on flow rate and cell damage in the dispensing-
doi: 10.1021/acsbiomaterials.8b00714 based biofabrication process. Biotechnol Prog.
2011;27(6):1777-1784.
64. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage,
viability, and functionality during 3D bioprinting. Mil Med doi: 10.1002/btpr.679
Res. 2022;9(1):1-15. 77. Chhabra RP, Richardson JF. Non-Newtonian Dlow and
doi: 10.1186/s40779-022-00429-5 Applied Rheology. Oxford, UK: Butterworth-Heinemann
65. Fakhruddin K, Hamzah MSA, Razak SIA. Effects of 2nd ed.; 2008.
extrusion pressure and printing speed of 3D bioprinted doi: 10.1016/B978-0-7506-8532-0.X0001-7
construct on the fibroblast cells viability. IOP Conf Ser Mater 78. Byron Bird R, Robert C, Armstrong OH. Dynamics of
Sci Eng. 2018;440(1):012042. Polymeric Liquids. 2nd ed. John Wiley & Sons; 1987.
doi: 10.1088/1757-899X/440/1/012042 doi: 10.1002/aic.690340623
Volume 10 Issue 6 (2024) 147 doi: 10.36922/ijb.3973

