Page 428 - IJB-9-2
P. 428
International Journal of Bioprinting Design and 3D printing of TPMS breast scaffolds
https://doi.org/10.1016/j.jmbbm.2020.104217 Transformation of breast reconstruction via additive
biomanufacturing. Sci Rep, 6: 28030.
10. Ekinci A, Johnson AA, Gleadall A, et al., 2020, Layer-
dependent properties of materials extruded biodegradable 22. She Y, Fan Z, Wang L, et al., 2021, 3D Printed biomimetic
polylactic acid. J Mech Behav Biomed Mater 104: 103654. PCL Scaffold as framework interspersed with collagen for
https://doi.org/10.1016/j.jmbbm.2020.103654 long segment tracheal replacement. Front Cell Dev Biol,
9: 629796.
11. Cano-Vicent A, Tambuwala MM, Hassan SS, et al., 2021,
Fused deposition modelling: Current status, methodology, https://doi.org/10.3389/fcell.2021.629796
applications and future prospects. Addit Manuf, 47: 102378. 23. Li H, Yin Y, Xiang Y, et al., 2020, A novel 3D printing PCL/
https://doi.org/10.1016/j.addma.2021.102378 GelMA scaffold containing USPIO for MRI-guided bile duct
repair. Biomed Mater, 15: 045004.
12. Penumakala PK, Santo J, Thomas A, 2020, A critical review
on the fused deposition modeling of thermoplastic polymer 24. Guo W, Chen M, Wang Z, et al., 2021, 3D-printed cell-free
composites. Compos Part B Eng, 201: 108336. PCL-MECM scaffold with biomimetic micro-structure
and micro-environment to enhance in situ meniscus
https://doi.org/10.1016/j.compositesb.2020.108336 regeneration. Bioact Mater, 6: 3620–3633.
13. Daminabo SC, Goel S, Grammatikos SA, et al., 2020, FDM- https://doi.org/10.1016/j.bioactmat.2021.02.019
based additive manufacturing (3D Printing): Techniques for
polymer material systems. Mater Today, 16: 100248. 25. Jang CH, Koo YW, Kim GH, 2020, ASC/chondrocyte-laden
alginate hydrogel/PCL hybrid scaffold fabricated using
https://doi.org/10.1016/j.mtchem.2020.100248 3D printing for auricle regeneration. Carbohydr Polym,
14. Li L, Zhu XL, Yang HY, et al., 2022, Phase-field model for 248: 116776.
drug release of water-swellable filaments for fused filament https://doi.org/10.1016/j.carbpol.2020.116776
fabrication. Mol Pharm, 19: 2854–2867.
26. Ishaug-Riley SL, Okun LE, Prado G, et al., 1999, Human
https://doi.org/10.1021/acs.molpharmaceut.2c00217 articular chondrocyte adhesion and proliferation on synthetic
15. Cleversey C, Robinson M, Willerth SM, 2019, 3D printing biodegradable polymer films. Biomaterials, 20: 23–24.
breast tissue models: A review of past work and directions https://doi.org/10.1016/S0142-9612(99)00155-6
for future work. Micromachines, 10: 501.
27. Yildirim ED, Ayan H, Vasilets VN, et al., 2008, Effect of
https://doi.org/10.3390/mi10080501 dielectric barrier discharge plasma on the attachment
16. Mohseni M, Bas O, Castro NJ, et al. Additive and proliferation of osteoblasts cultured over poly(e-
biomanufacturing of scaffolds for breast reconstruction. caprolactone) scaffolds. Plasma Processes Polym, 5: 58–66.
Addit Manuf, 30: 100845. https://doi.org/10.1002/ppap.200700041
https://doi.org/10.1016/j.addma.2019.100845 28. Ho TC, Chang CC, Chan HP, et al., Hydrogels: Properties
17. Arif ZU, Khalid MY, Noroozi R, et al., 2022, Recent advances and application in biomedicine. Molecules, 27: 2902.
in 3D-printed polylactide and polycaprolactone-based https://doi.org/10.3390/molecules27092902
biomaterials for tissue engineering applications. Int J Biol
Macromol, 218: 930–968. 29. Correa S, Grosskopf AK, Hernandez HL, et al., 2021,
Translational applications of hydrogels. Chem Rev,
https://doi.org/10.1016/j.ijbiomac.2022.07.140 121: 11385–11457.
18. Stefaniak K, Masek A, 2021, Green copolymers based on https://doi.org/10.1021/acs.chemrev.0c01177
poly (lactic acid)-short review. Materials, 14: 5254.
30. Wang YH, Cao XF, Ma M, et al., 2020, A GelMA-PEGDA-
https://doi.org/10.3390/ma14185254
nHA composite hydrogel for bone tissue engineering.
19. Ramot Y, Haim-Zada M, Domb AJ, et al., 2016, Materials, 13: 3735.
Biocompatibility and safety of PLA and its copolymers. Adv https://doi.org/10.3390/ma13173735
Drug Deliv Rev, 107: 153–162.
31. Yuan M, Liu K, Jiang T, et al., 2022, GelMA/PEGDA
https://doi.org/10.1016/j.addr.2016.03.012 microneedles patch loaded with HUVECs-derived
20. Da Silva DD, Kaduri M, Poley M, et al., 2018, exosomes and Tazarotene promote diabetic wound healing.
Biocompatibility, biodegradation and excretion of polylactic J Nanobiotechnol, 20: 147.
acid (PLA) in medical implants and theranostic systems. https://doi.org/10.1186/s12951-022-01354-4
Chem Eng J, 340: 9–14.
32. Meng Z, He J, Cai Z, et al., 2020, Design and additive
https://doi.org/10.1016/j.cej.2018.01.010
manufacturing of flexible polycaprolactone scaffolds
21. Chhaya MP, Balmayor ER, Hutmacher DW, et al., 2016, with highly-tunable mechanical properties for soft tissue
Volume 9 Issue 2 (2023) 420 https://doi.org/10.18063/ijb.685

