Page 428 - IJB-9-2
P. 428

International Journal of Bioprinting                           Design and 3D printing of TPMS breast scaffolds


               https://doi.org/10.1016/j.jmbbm.2020.104217        Transformation of breast reconstruction via additive
                                                                  biomanufacturing. Sci Rep, 6: 28030.
            10.  Ekinci A, Johnson AA, Gleadall A,  et  al., 2020, Layer-
               dependent properties of materials extruded biodegradable   22.  She Y, Fan Z, Wang L, et al., 2021, 3D Printed biomimetic
               polylactic acid. J Mech Behav Biomed Mater 104: 103654.   PCL Scaffold as framework interspersed with collagen for
               https://doi.org/10.1016/j.jmbbm.2020.103654        long segment tracheal replacement.  Front Cell Dev Biol,
                                                                  9: 629796.
            11.  Cano-Vicent  A,  Tambuwala  MM,  Hassan  SS,  et al.,  2021,
               Fused deposition modelling: Current status, methodology,      https://doi.org/10.3389/fcell.2021.629796
               applications and future prospects. Addit Manuf, 47: 102378.   23.  Li H, Yin Y, Xiang Y, et al., 2020, A novel 3D printing PCL/
               https://doi.org/10.1016/j.addma.2021.102378        GelMA scaffold containing USPIO for MRI-guided bile duct
                                                                  repair. Biomed Mater, 15: 045004.
            12.  Penumakala PK, Santo J, Thomas A, 2020, A critical review
               on the fused deposition modeling of thermoplastic polymer   24.  Guo W, Chen M, Wang Z, et al., 2021, 3D-printed cell-free
               composites. Compos Part B Eng, 201: 108336.        PCL-MECM scaffold with biomimetic micro-structure
                                                                  and micro-environment to enhance in situ meniscus
               https://doi.org/10.1016/j.compositesb.2020.108336  regeneration. Bioact Mater, 6: 3620–3633.
            13.  Daminabo SC, Goel S, Grammatikos SA, et al., 2020, FDM-     https://doi.org/10.1016/j.bioactmat.2021.02.019
               based additive manufacturing (3D Printing): Techniques for
               polymer material systems. Mater Today, 16: 100248.   25.  Jang CH, Koo YW, Kim GH, 2020, ASC/chondrocyte-laden
                                                                  alginate hydrogel/PCL hybrid scaffold fabricated using
               https://doi.org/10.1016/j.mtchem.2020.100248       3D printing for auricle regeneration.  Carbohydr Polym,
            14.  Li L, Zhu XL, Yang HY, et al., 2022, Phase-field model for   248: 116776.
               drug release of water-swellable filaments for fused filament      https://doi.org/10.1016/j.carbpol.2020.116776
               fabrication. Mol Pharm, 19: 2854–2867.
                                                               26.  Ishaug-Riley SL, Okun LE, Prado G,  et al., 1999, Human
               https://doi.org/10.1021/acs.molpharmaceut.2c00217  articular chondrocyte adhesion and proliferation on synthetic
            15.  Cleversey C, Robinson M, Willerth SM, 2019, 3D printing   biodegradable polymer films. Biomaterials, 20: 23–24.
               breast tissue models: A review of past work and directions      https://doi.org/10.1016/S0142-9612(99)00155-6
               for future work. Micromachines, 10: 501.
                                                               27.  Yildirim ED, Ayan H,  Vasilets VN,  et al., 2008,  Effect of
               https://doi.org/10.3390/mi10080501                 dielectric barrier discharge plasma on the attachment
            16.  Mohseni M, Bas O, Castro NJ,  et al. Additive    and proliferation of osteoblasts cultured over poly(e-
               biomanufacturing of scaffolds for breast reconstruction.   caprolactone) scaffolds. Plasma Processes Polym, 5: 58–66.
               Addit Manuf, 30: 100845.                           https://doi.org/10.1002/ppap.200700041
               https://doi.org/10.1016/j.addma.2019.100845     28.  Ho TC, Chang CC, Chan HP, et al., Hydrogels: Properties
            17.  Arif ZU, Khalid MY, Noroozi R, et al., 2022, Recent advances   and application in biomedicine. Molecules, 27: 2902.
               in 3D-printed polylactide and polycaprolactone-based      https://doi.org/10.3390/molecules27092902
               biomaterials for tissue engineering applications.  Int J Biol
               Macromol, 218: 930–968.                         29.  Correa S, Grosskopf AK, Hernandez HL,  et al., 2021,
                                                                  Translational applications of hydrogels.  Chem Rev,
               https://doi.org/10.1016/j.ijbiomac.2022.07.140     121: 11385–11457.
            18.  Stefaniak K, Masek A, 2021, Green copolymers based on      https://doi.org/10.1021/acs.chemrev.0c01177
               poly (lactic acid)-short review. Materials, 14: 5254.
                                                               30.  Wang YH, Cao XF, Ma M, et al., 2020, A GelMA-PEGDA-
               https://doi.org/10.3390/ma14185254
                                                                  nHA composite hydrogel for bone tissue engineering.
            19.  Ramot Y, Haim-Zada M, Domb AJ,  et al., 2016,    Materials, 13: 3735.
               Biocompatibility and safety of PLA and its copolymers. Adv      https://doi.org/10.3390/ma13173735
               Drug Deliv Rev, 107: 153–162.
                                                               31.  Yuan M, Liu K, Jiang T,  et al., 2022, GelMA/PEGDA
               https://doi.org/10.1016/j.addr.2016.03.012         microneedles patch loaded with HUVECs-derived
            20.  Da Silva DD, Kaduri M, Poley M,  et al., 2018,   exosomes and Tazarotene promote diabetic wound healing.
               Biocompatibility, biodegradation and excretion of polylactic   J Nanobiotechnol, 20: 147.
               acid (PLA) in medical implants and theranostic systems.      https://doi.org/10.1186/s12951-022-01354-4
               Chem Eng J, 340: 9–14.
                                                               32.  Meng Z, He J, Cai Z,  et al., 2020, Design and additive
               https://doi.org/10.1016/j.cej.2018.01.010
                                                                  manufacturing of flexible polycaprolactone scaffolds
            21.  Chhaya MP, Balmayor ER, Hutmacher DW,  et al., 2016,   with  highly-tunable  mechanical  properties for  soft tissue


            Volume 9 Issue 2 (2023)                        420                         https://doi.org/10.18063/ijb.685
   423   424   425   426   427   428   429   430   431   432   433