Page 438 - IJB-9-2
P. 438

International Journal of Bioprinting                               Shear-thinning and bioprinting parameters


               https://doi.org/10.1093/ejcts/ezu242               https://doi.org/10.1002/adma.200802106
            5.   Vijayavenkataraman S, Lu WF, Fuh JY, 2016, 3D bioprinting   17.  Mørch YA, Donati I, Strand BL, et al., 2006, Effect of Ca2+,
               of skin: A state-of-the-art review on modelling, materials,   Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules,
               and processes. Biofabrication, 8: 032001.          7: 1471–1480.
               https://doi.org/10.1088/1758-5090/8/3/032001       https://doi.org/10.1021/bm060010d
            6.   Cubo N, Garcia M, Del Cañizo JF, et al., 2016, 3D bioprinting   18.  Freeman FE, Kelly DJ, 2017, Tuning alginate bioink stiffness
               of functional human skin: Production and in vivo analysis.   and composition for controlled growth factor delivery and
               Biofabrication, 9: 015006.                         to spatially direct MSC Fate within bioprinted tissues. Sci
                                                                  Rep, 7: 17042.
               https://doi.org/10.1088/1758-5090/9/1/015006
                                                                  https://doi.org/10.1038/s41598-017-17286-1
            7.   Izadifar M, Chapman D, Babyn P, et al., 2018, UV-assisted
               3D bioprinting of nanoreinforced hybrid cardiac patch for   19.  Kim MH, Lee YW, Jung WK, et al., 2019, Nam, Enhanced
               myocardial tissue engineering. Tissue Eng Part C Methods,   rheological behaviors of alginate hydrogels with carrageenan
               24: 74–88.                                         for extrusion-based bioprinting.  J  Mech Behav Biomed
                                                                  Mater, 98: 187–194.
               https://doi.org/10.1089/ten.tec.2017.0346
                                                                  https://doi.org/10.1016/j.jmbbm.2019.06.014
            8.   Xiongfa J, Hao Z, Liming Z, et al., 2018, Recent advances in
               3D bioprinting for the regeneration of functional cartilage.   20.  Gonzalez-Fernandez T, Tenorio AJ, Campbell KT,  et  al.,
               Regen Med, 13: 73–87.                              2021, Alginate-based bioinks for 3d bioprinting and
                                                                  fabrication of anatomically accurate bone grafts. Tissue Eng
               https://doi.org/10.2217/rme-2017-0106
                                                                  Part A, 27: 1168–1181.
            9.   Wang X, Ao Q, Tian X,  et al., 2016, 3D bioprinting      https://doi.org/10.1089/ten.tea.2020.0305
               technologies for hard tissue and organ engineering.
               Materials (Basel), 9: 802.                      21.  Li H, Tan YJ, Kiran R,  et  al., 2021, Submerged and non-
                                                                  submerged 3D  bioprinting  approaches  for the  fabrication
               https://doi.org/10.3390/ma9100802
                                                                  of complex structures with the hydrogel pair GelMA and
            10.  Ashammakhi N, Hasan A, Kaarela O, et al., 2019, Advancing   alginate/methylcellulose. Addit Manufac, 37: 101640.
               frontiers in bone bioprinting. Adv Healthc Mater, 8: 1801048.
                                                                  https://doi.org/10.1016/j.addma.2020.101640
               https://doi.org/10.1002/adhm.201801048
                                                               22.  Li H, Tan YJ, Leong KF,  et al., 2017, 3D Bioprinting of
            11.  Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting   highly thixotropic alginate/methylcellulose hydrogel with
               for biomedical devices and tissue engineering: A review of   strong interface bonding.  ACS Appl Mater Interfaces,
               recent trends and advances. Bioact Mater, 3: 144–156.   9: 20086–20097.
               https://doi.org/10.1016/j.bioactmat.2017.11.008     https://doi.org/10.1021/acsami.7b04216
            12.  Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez   23.  Aldana AA, Valente F, Dilley R, et al., 2021, Development
               BE, et al., 2021, Bioinks for 3D bioprinting: A scientometric   of 3D bioprinted GelMA-alginate hydrogels with tunable
               analysis of two decades of progress. Int J Bioprint, 7: 333.   mechanical properties. Bioprinting, 21: e00105.
               https://doi.org/10.18063/ijb.v7i2.337              https://doi.org/10.1016/j.bprint.2020.e00105
            13.  Mobaraki M, Ghaffari M, Yazdanpanah A,  et al., 2020,   24.  Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
               Bioinks and bioprinting: A  focused review.  Bioprinting,   hydrogel composed of hyaluronic acid and alginate as a
               18: e00080.                                        potential bioink for 3D bioprinting of articular cartilage
                                                                  engineering constructs. Acta Biomater, 106: 114–123.
               https://doi.org/10.1016/j.bprint.2020.e00080
                                                                  https://doi.org/10.1016/j.actbio.2020.01.046
            14.  Annabi N,  Tamayol  A, Uquillas JA,  et al.,  2014,
               25  anniversary article: Rational design and applications of   25.  Adhikari J, Perwez MS, Das A, et al., 2021, Development of
                 th
               hydrogels in regenerative medicine. Adv Mater, 26: 85–123.   hydroxyapatite reinforced alginate-chitosan based printable
                                                                  biomaterial-ink. Nano Struct Nano Objects. 25: 100630.
               https://doi.org/10.1002/adma.201303233
                                                                  https://doi.org/10.1016/j.nanoso.2020.100630
            15.  Fisher OZ, Khademhosseini A, Langer R,  et  al., 2010,
               Bioinspired materials for controlling stem cell fate.  Acc   26.  Mousavi SM, Rafe A, Yeganehzad S, 2020, Structure-
               Chem Res, 43: 419–428.                             rheology relationships of composite gels: Alginate and Basil
                                                                  seed gum/guar gum. Carbohydr Polym, 232: 115809.
               https://doi.org/10.1021/ar900226q
                                                                  https://doi.org/10.1016/j.carbpol.2019.115809
            16.  Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels
               in regenerative medicine. Adv Mater, 21: 3307–3329.   27.  Karimi H, Javaherdeh K, 2021, Numerical analysis of mix


            Volume 9 Issue 2 (2023)                        430                         https://doi.org/10.18063/ijb.687
   433   434   435   436   437   438   439   440   441   442   443