Page 438 - IJB-9-2
P. 438
International Journal of Bioprinting Shear-thinning and bioprinting parameters
https://doi.org/10.1093/ejcts/ezu242 https://doi.org/10.1002/adma.200802106
5. Vijayavenkataraman S, Lu WF, Fuh JY, 2016, 3D bioprinting 17. Mørch YA, Donati I, Strand BL, et al., 2006, Effect of Ca2+,
of skin: A state-of-the-art review on modelling, materials, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules,
and processes. Biofabrication, 8: 032001. 7: 1471–1480.
https://doi.org/10.1088/1758-5090/8/3/032001 https://doi.org/10.1021/bm060010d
6. Cubo N, Garcia M, Del Cañizo JF, et al., 2016, 3D bioprinting 18. Freeman FE, Kelly DJ, 2017, Tuning alginate bioink stiffness
of functional human skin: Production and in vivo analysis. and composition for controlled growth factor delivery and
Biofabrication, 9: 015006. to spatially direct MSC Fate within bioprinted tissues. Sci
Rep, 7: 17042.
https://doi.org/10.1088/1758-5090/9/1/015006
https://doi.org/10.1038/s41598-017-17286-1
7. Izadifar M, Chapman D, Babyn P, et al., 2018, UV-assisted
3D bioprinting of nanoreinforced hybrid cardiac patch for 19. Kim MH, Lee YW, Jung WK, et al., 2019, Nam, Enhanced
myocardial tissue engineering. Tissue Eng Part C Methods, rheological behaviors of alginate hydrogels with carrageenan
24: 74–88. for extrusion-based bioprinting. J Mech Behav Biomed
Mater, 98: 187–194.
https://doi.org/10.1089/ten.tec.2017.0346
https://doi.org/10.1016/j.jmbbm.2019.06.014
8. Xiongfa J, Hao Z, Liming Z, et al., 2018, Recent advances in
3D bioprinting for the regeneration of functional cartilage. 20. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, et al.,
Regen Med, 13: 73–87. 2021, Alginate-based bioinks for 3d bioprinting and
fabrication of anatomically accurate bone grafts. Tissue Eng
https://doi.org/10.2217/rme-2017-0106
Part A, 27: 1168–1181.
9. Wang X, Ao Q, Tian X, et al., 2016, 3D bioprinting https://doi.org/10.1089/ten.tea.2020.0305
technologies for hard tissue and organ engineering.
Materials (Basel), 9: 802. 21. Li H, Tan YJ, Kiran R, et al., 2021, Submerged and non-
submerged 3D bioprinting approaches for the fabrication
https://doi.org/10.3390/ma9100802
of complex structures with the hydrogel pair GelMA and
10. Ashammakhi N, Hasan A, Kaarela O, et al., 2019, Advancing alginate/methylcellulose. Addit Manufac, 37: 101640.
frontiers in bone bioprinting. Adv Healthc Mater, 8: 1801048.
https://doi.org/10.1016/j.addma.2020.101640
https://doi.org/10.1002/adhm.201801048
22. Li H, Tan YJ, Leong KF, et al., 2017, 3D Bioprinting of
11. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting highly thixotropic alginate/methylcellulose hydrogel with
for biomedical devices and tissue engineering: A review of strong interface bonding. ACS Appl Mater Interfaces,
recent trends and advances. Bioact Mater, 3: 144–156. 9: 20086–20097.
https://doi.org/10.1016/j.bioactmat.2017.11.008 https://doi.org/10.1021/acsami.7b04216
12. Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez 23. Aldana AA, Valente F, Dilley R, et al., 2021, Development
BE, et al., 2021, Bioinks for 3D bioprinting: A scientometric of 3D bioprinted GelMA-alginate hydrogels with tunable
analysis of two decades of progress. Int J Bioprint, 7: 333. mechanical properties. Bioprinting, 21: e00105.
https://doi.org/10.18063/ijb.v7i2.337 https://doi.org/10.1016/j.bprint.2020.e00105
13. Mobaraki M, Ghaffari M, Yazdanpanah A, et al., 2020, 24. Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
Bioinks and bioprinting: A focused review. Bioprinting, hydrogel composed of hyaluronic acid and alginate as a
18: e00080. potential bioink for 3D bioprinting of articular cartilage
engineering constructs. Acta Biomater, 106: 114–123.
https://doi.org/10.1016/j.bprint.2020.e00080
https://doi.org/10.1016/j.actbio.2020.01.046
14. Annabi N, Tamayol A, Uquillas JA, et al., 2014,
25 anniversary article: Rational design and applications of 25. Adhikari J, Perwez MS, Das A, et al., 2021, Development of
th
hydrogels in regenerative medicine. Adv Mater, 26: 85–123. hydroxyapatite reinforced alginate-chitosan based printable
biomaterial-ink. Nano Struct Nano Objects. 25: 100630.
https://doi.org/10.1002/adma.201303233
https://doi.org/10.1016/j.nanoso.2020.100630
15. Fisher OZ, Khademhosseini A, Langer R, et al., 2010,
Bioinspired materials for controlling stem cell fate. Acc 26. Mousavi SM, Rafe A, Yeganehzad S, 2020, Structure-
Chem Res, 43: 419–428. rheology relationships of composite gels: Alginate and Basil
seed gum/guar gum. Carbohydr Polym, 232: 115809.
https://doi.org/10.1021/ar900226q
https://doi.org/10.1016/j.carbpol.2019.115809
16. Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels
in regenerative medicine. Adv Mater, 21: 3307–3329. 27. Karimi H, Javaherdeh K, 2021, Numerical analysis of mix
Volume 9 Issue 2 (2023) 430 https://doi.org/10.18063/ijb.687

