Page 445 - IJB-9-2
P. 445
International Journal of Bioprinting Bioprinting of DNA hydrogels for bone organoids
14. Um SH, Lee JB, Park N, et al., 2006, Enzyme-catalysed 24. Baert Y, Rombaut C, Goossens E, 2019, Scaffold-based and
assembly of DNA hydrogel. Nat Mater, 5(10):797–801. scaffold-free testicular organoids from primary human
15. Morya V, Walia S, Mandal BB, et al., 2020, Functional DNA testicular cells, in Turksen K, editor. Organoids: Stem Cells,
based hydrogels: Development, properties and biological Structure, and Function, Springer New York, New York, NY,
applications. ACS Biomater Sci Eng, 6(11):6021–6035. 283–290.
25. Kim S, Min S, Choi YS, et al., 2022, Tissue extracellular
16. Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable
biomaterials and light-based 3D printing strategies for matrix hydrogels as alternatives to matrigel for culturing
biomedical applications. Chem Rev, 120(19):10695–10743. gastrointestinal organoids. Nat Commun, 13(1):1692.
26. Akiva A, Melke J, Ansari S, et al., 2021, An organoid for
17. Zhao Y-L, Stoddart JF, 2009, Azobenzene-based light-
responsive hydrogel system. Langmuir, 25(15):8442–8446. woven bone. Adv Funct Mater, 31(17):2010524.
27. Giger S, Hofer M, Miljkovic-Licina M, et al., 2021,
18. Kang H, Liu H, Zhang X, et al., 2011, Photoresponsive DNA-
cross-linked hydrogels for controllable release and cancer Microarrayed human bone marrow organoids for modeling
therapy. Langmuir, 27(1):399–408. blood stem cell dynamics. bioRxiv, 2021.2005.2026.445803.
28. Nilsson Hall G, Mendes LF, Gklava C, et al., 2020,
19. Kandatsu D, Cervantes-Salguero K, Kawamata I, et al., 2016,
Reversible gel-sol transition of a photo-responsive DNA gel. Developmentally engineered callus organoid bioassemblies
ChemBioChem, 17(12):1118–1121. exhibit predictive in vivo long bone healing. Adv Sci,
7(2):1902295.
20. Peng L, You M, Yuan Q, et al., 2012, Macroscopic volume
change of dynamic hydrogels induced by reversible DNA 29. Hall GN, Tam WL, Andrikopoulos KS, et al., 2021, Patterned,
hybridization. J Am Chem Soc, 134(29):12302–12307. organoid-based cartilaginous implants exhibit zone specific
functionality forming osteochondral-like tissues in vivo.
21. Li C, Faulkner-Jones A, Dun AR, et al., 2015, Rapid Biomaterials, 273:120820.
formation of a supramolecular polypeptide–DNA hydrogel 30. Park Y, Cheong E, Kwak J-G, et al., 2021, Trabecular bone
for in situ three-dimensional multilayer bioprinting. Angew organoid model for studying the regulation of localized
Chem Int Ed, 54(13):3957–3961.
bone remodeling. Sci Adv, 7(4):eabd6495.
22. Müller J, Jäkel AC, Schwarz D, et al., 2020, Programming
diffusion and localization of DNA signals in 3D-printed 31. Li F, Tang J, Geng J, et al., 2019, Polymeric DNA hydrogel:
DNA-functionalized hydrogels. Small, 16(31):2001815. Design, synthesis and applications. Prog Polym Sci,
98:101163.
23. Chen S, Chen X, Geng Z, et al., 2022, The horizon of bone
organoid: A perspective on construction and application. 32. Yan X, Yang B, Chen Y, et al., 2021, Anti-friction
Bioact Mater, 18:15–25. MSCs delivery system improves the therapy for severe
osteoarthritis. Adv Mater, 33(52):2104758.
Volume 9 Issue 2 (2023) 437 https://doi.org/10.18063/ijb.688

