Page 445 - IJB-9-2
P. 445

International Journal of Bioprinting                           Bioprinting of DNA hydrogels for bone organoids



            14.  Um SH, Lee JB, Park N,  et al., 2006, Enzyme-catalysed   24.  Baert Y, Rombaut C, Goossens E, 2019, Scaffold-based and
               assembly of DNA hydrogel. Nat Mater, 5(10):797–801.  scaffold-free testicular organoids from primary human
            15.  Morya V, Walia S, Mandal BB, et al., 2020, Functional DNA   testicular cells, in Turksen K, editor. Organoids: Stem Cells,
               based hydrogels: Development, properties and biological   Structure, and Function, Springer New York, New York, NY,
               applications. ACS Biomater Sci Eng, 6(11):6021–6035.  283–290.
                                                               25.  Kim S, Min S, Choi YS,  et  al., 2022, Tissue extracellular
            16.  Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable
               biomaterials and light-based 3D printing strategies for   matrix  hydrogels as alternatives  to matrigel  for culturing
               biomedical applications. Chem Rev, 120(19):10695–10743.  gastrointestinal organoids. Nat Commun, 13(1):1692.
                                                               26.  Akiva A, Melke J, Ansari S, et al., 2021, An organoid for
            17.  Zhao Y-L, Stoddart JF, 2009, Azobenzene-based light-
               responsive hydrogel system. Langmuir, 25(15):8442–8446.  woven bone. Adv Funct Mater, 31(17):2010524.
                                                               27.  Giger S, Hofer M, Miljkovic-Licina M,  et al., 2021,
            18.  Kang H, Liu H, Zhang X, et al., 2011, Photoresponsive DNA-
               cross-linked hydrogels for controllable release and cancer   Microarrayed human bone marrow organoids for modeling
               therapy. Langmuir, 27(1):399–408.                  blood stem cell dynamics. bioRxiv, 2021.2005.2026.445803.
                                                               28.  Nilsson  Hall  G,  Mendes  LF,  Gklava  C,  et al.,  2020,
            19.  Kandatsu D, Cervantes-Salguero K, Kawamata I, et al., 2016,
               Reversible gel-sol transition of a photo-responsive DNA gel.   Developmentally engineered callus organoid bioassemblies
               ChemBioChem, 17(12):1118–1121.                     exhibit  predictive  in  vivo  long  bone  healing.  Adv Sci,
                                                                  7(2):1902295.
            20.  Peng L, You M, Yuan Q, et al., 2012, Macroscopic volume
               change of dynamic hydrogels induced by reversible DNA   29.  Hall GN, Tam WL, Andrikopoulos KS, et al., 2021, Patterned,
               hybridization. J Am Chem Soc, 134(29):12302–12307.  organoid-based cartilaginous implants exhibit zone specific
                                                                  functionality forming osteochondral-like tissues in vivo.
            21.  Li C, Faulkner-Jones A, Dun AR,  et al., 2015, Rapid   Biomaterials, 273:120820.
               formation of a supramolecular polypeptide–DNA hydrogel   30.  Park Y, Cheong E, Kwak J-G, et al., 2021, Trabecular bone
               for in situ three-dimensional multilayer bioprinting. Angew   organoid model for studying the regulation of localized
               Chem Int Ed, 54(13):3957–3961.
                                                                  bone remodeling. Sci Adv, 7(4):eabd6495.
            22.  Müller J, Jäkel AC, Schwarz D, et al., 2020, Programming
               diffusion and localization of DNA signals  in 3D-printed   31.  Li F, Tang J, Geng J, et al., 2019, Polymeric DNA hydrogel:
               DNA-functionalized hydrogels. Small, 16(31):2001815.  Design, synthesis and applications.  Prog Polym Sci,
                                                                  98:101163.
            23.  Chen S, Chen X, Geng Z, et al., 2022, The horizon of bone
               organoid: A perspective on construction and application.   32.  Yan X, Yang B, Chen Y,  et al., 2021, Anti-friction
               Bioact Mater, 18:15–25.                            MSCs delivery system improves the therapy for severe
                                                                  osteoarthritis. Adv Mater, 33(52):2104758.


































            Volume 9 Issue 2 (2023)                        437                          https://doi.org/10.18063/ijb.688
   440   441   442   443   444   445   446   447   448   449   450