Page 195 - IJB-9-5
P. 195
International Journal of Bioprinting Functional materials of 3D bioprinting for wound healing
https://doi.org/10.1016/j.biomaterials.2017.01.011 technologies for soft polymer materials. Adv Funct Mater,
30(28):2000187.
78. Dominguez-Robles J, Martin NK, Fong ML, et al., 2019,
Antioxidant PLA composites containing lignin for 3D https://doi.org/10.1002/adfm.202000187
Printing applications: A potential material for healthcare
applications. Pharmaceutics, 11(4):165. 89. Yang Y, Gao W, 2019, Wearable and flexible electronics
for continuous molecular monitoring. Chem Soc Rev,
https://doi.org/10.3390/pharmaceutics11040165 48(6):1465–1491.
79. Comino-Sanz IM, Lopez-Franco MD, Castro B, et al., 2021, https://doi.org/10.1039/c7cs00730b
The role of antioxidants on wound healing: A review of the
current evidence. J Clin Med, 10(16):3558. 90. Shintake J, Cacucciolo V, Floreano D, et al., 2018, Soft
robotic grippers. Adv Mater, 30(29):1707035.
https://doi.org/10.3390/jcm10163558
https://doi.org/10.1002/adma.201707035
80. Viana-Mendieta P, Sanchez ML, Benavides J, 2022, 91. Zhu C, Ninh C, Bettinger CJ, 2014, Photoreconfigurable
Rational selection of bioactive principles for wound healing polymers for biomedical applications: Chemistry and
applications: Growth factors and antioxidants. Int Wound J, macromolecular engineering. Biomacromolecules,
19(1):100–113.
15(10):3474–3494.
https://doi.org/10.1111/iwj.13602 https://doi.org/10.1021/bm500990z
81. Huang Y, Zhao X, Zhang Z, et al., 2020, Degradable 92. Kim TH, An DB, Oh SH, et al., 2015, Creating stiffness
gelatin-based IPN cryogel hemostat for rapidly stopping gradient polyvinyl alcohol hydrogel using a simple
deep noncompressible hemorrhage and simultaneously gradual freezing-thawing method to investigate stem cell
improving wound healing. Chem Mater, 32(15):6595–6610. differentiation behaviors. Biomaterials, 40:51–60.
https://doi.org/10.1021/acs.chemmater.0c02030 https://doi.org/10.1016/j.biomaterials.2014.11.017
82. Sung YK, Lee DR, Chung DJ, 2021, Advances in the 93. Guvendiren M, Molde J, Soares RM, et al., 2016, Designing
development of hemostatic biomaterials for medical biomaterials for 3D printing. ACS Biomater Sci Eng,
application. Biomater Res, 25(1):37. 2(10):1679–1693.
https://doi.org/10.1186/s40824-021-00239-1 https://doi.org/10.1021/acsbiomaterials.6b00121
83. Hu Z, Zhang DY, Lu ST, et al., 2018, Chitosan-based 94. Wang P, Wang C, Liu C, 2021, Antitumor effects of dioscin in
composite materials for prospective hemostatic applications. A431 cells via adjusting ATM/p53-mediated cell apoptosis,
Mar Drugs, 16(8):273. DNA damage and migration. Oncol Lett, 21(1):59.
https://doi.org/10.3390/md16080273 https://doi.org/10.3892/ol.2020.12321
84. Biranje SS, Sun J, Shi Y, et al., 2021, Polysaccharide-based 95. Jain S, Chandra V, Kumar Jain P, et al., 2019, Comprehensive
hemostats: recent developments, challenges, and future review on current developments of quinoline-based
perspectives. Cellulose, 28(14):8899–8937. anticancer agents. Arab J Chem, 12(8):4920–4946.
https://doi.org/10.1007/s10570-021-04132-x https://doi.org/10.1016/j.arabjc.2016.10.009
85. Zhong Y, Hu H, Min N, et al., 2021, Application and outlook 96. Bagheri B, Zarrintaj P, Surwase SS, et al., 2019, Self-gelling
of topical hemostatic materials: A narrative review. Ann electroactive hydrogels based on chitosan-aniline oligomers/
Transl Med, 9(7):577. agarose for neural tissue engineering with on-demand drug
release. Colloids Surf B Biointerfaces, 184:110549.
https://doi.org/10.21037/atm-20-7160
https://doi.org/10.1016/j.colsurfb.2019.110549
86. Duarte AP, Coelho JF, Bordado JC, et al., 2012, Surgical
adhesives: Systematic review of the main types and 97. Qiu M, Wang D, Liang W, et al., 2018, Novel concept of the
development forecast. Prog Polym Sci, 37(8):1031–1050. smart NIR-light-controlled drug release of black phosphorus
nanostructure for cancer therapy. Proc Natl Acad Sci U S A,
https://doi.org/10.1016/j.progpolymsci.2011.12.003 115(3):501–506.
87. Zheng Y, Ma W, Yang Z, et al., 2022, An ultralong https://doi.org/10.1073/pnas.1714421115
hydroxyapatite nanowire aerogel for rapid hemostasis and
wound healing. Chem Eng J, 430:132912. 98. Ghofrani A, Taghavi L, Khalilivavdareh B, et al., 2022,
Additive manufacturing and advanced functionalities of
https://doi.org/10.1016/j.cej.2021.132912 cardiac patches: A review. Eur Polym J, 174:111332.
88. Zhou LY, Fu J, He Y, 2020, A review of 3D printing https://doi.org/10.1016/j.eurpolymj.2022.111332
Volume 9 Issue 5 (2023) 187 https://doi.org/10.18063/ijb.757

