Page 195 - IJB-9-5
P. 195

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



               https://doi.org/10.1016/j.biomaterials.2017.01.011  technologies for soft polymer materials. Adv Funct Mater,
                                                                  30(28):2000187.
            78.  Dominguez-Robles J, Martin NK, Fong ML, et al., 2019,
               Antioxidant PLA composites containing lignin for 3D   https://doi.org/10.1002/adfm.202000187
               Printing applications: A potential material for healthcare
               applications. Pharmaceutics, 11(4):165.         89.  Yang Y, Gao W, 2019, Wearable and flexible electronics
                                                                  for continuous molecular monitoring.  Chem Soc Rev,
               https://doi.org/10.3390/pharmaceutics11040165      48(6):1465–1491.
            79.  Comino-Sanz IM, Lopez-Franco MD, Castro B, et al., 2021,   https://doi.org/10.1039/c7cs00730b
               The role of antioxidants on wound healing: A review of the
               current evidence. J Clin Med, 10(16):3558.      90.  Shintake  J,  Cacucciolo  V,  Floreano  D, et al.,  2018,  Soft
                                                                  robotic grippers. Adv Mater, 30(29):1707035.
               https://doi.org/10.3390/jcm10163558
                                                                  https://doi.org/10.1002/adma.201707035
            80.  Viana-Mendieta P, Sanchez ML, Benavides J, 2022,   91.  Zhu C, Ninh C, Bettinger CJ, 2014, Photoreconfigurable
               Rational selection of bioactive principles for wound healing   polymers for biomedical applications: Chemistry and
               applications: Growth factors and antioxidants. Int Wound J,   macromolecular  engineering.  Biomacromolecules,
               19(1):100–113.
                                                                  15(10):3474–3494.
               https://doi.org/10.1111/iwj.13602                  https://doi.org/10.1021/bm500990z
            81.  Huang Y, Zhao X, Zhang Z, et al., 2020, Degradable   92.  Kim TH, An DB, Oh SH, et al., 2015, Creating stiffness
               gelatin-based IPN cryogel hemostat for rapidly stopping   gradient polyvinyl alcohol hydrogel using a simple
               deep  noncompressible  hemorrhage  and  simultaneously   gradual freezing-thawing method to investigate stem cell
               improving wound healing. Chem Mater, 32(15):6595–6610.  differentiation behaviors. Biomaterials, 40:51–60.

               https://doi.org/10.1021/acs.chemmater.0c02030      https://doi.org/10.1016/j.biomaterials.2014.11.017
            82.  Sung YK, Lee DR, Chung DJ, 2021, Advances in the   93.  Guvendiren M, Molde J, Soares RM, et al., 2016, Designing
               development of hemostatic biomaterials for medical   biomaterials for 3D printing.  ACS Biomater Sci Eng,
               application. Biomater Res, 25(1):37.               2(10):1679–1693.
               https://doi.org/10.1186/s40824-021-00239-1         https://doi.org/10.1021/acsbiomaterials.6b00121

            83.  Hu Z, Zhang DY, Lu ST, et al., 2018, Chitosan-based   94.  Wang P, Wang C, Liu C, 2021, Antitumor effects of dioscin in
               composite materials for prospective hemostatic applications.   A431 cells via adjusting ATM/p53-mediated cell apoptosis,
               Mar Drugs, 16(8):273.                              DNA damage and migration. Oncol Lett, 21(1):59.

               https://doi.org/10.3390/md16080273                 https://doi.org/10.3892/ol.2020.12321
            84.  Biranje SS, Sun J, Shi Y, et al., 2021, Polysaccharide-based   95.  Jain S, Chandra V, Kumar Jain P, et al., 2019, Comprehensive
               hemostats: recent developments, challenges, and future   review on current developments of quinoline-based
               perspectives. Cellulose, 28(14):8899–8937.         anticancer agents. Arab J Chem, 12(8):4920–4946.
               https://doi.org/10.1007/s10570-021-04132-x         https://doi.org/10.1016/j.arabjc.2016.10.009

            85.  Zhong Y, Hu H, Min N, et al., 2021, Application and outlook   96.  Bagheri B, Zarrintaj P, Surwase SS, et al., 2019, Self-gelling
               of topical hemostatic  materials:  A narrative review.  Ann   electroactive hydrogels based on chitosan-aniline oligomers/
               Transl Med, 9(7):577.                              agarose for neural tissue engineering with on-demand drug
                                                                  release. Colloids Surf B Biointerfaces, 184:110549.
               https://doi.org/10.21037/atm-20-7160
                                                                  https://doi.org/10.1016/j.colsurfb.2019.110549
            86.  Duarte AP, Coelho  JF, Bordado  JC, et al.,  2012,  Surgical
               adhesives: Systematic review of the main types and   97.  Qiu M, Wang D, Liang W, et al., 2018, Novel concept of the
               development forecast. Prog Polym Sci, 37(8):1031–1050.  smart NIR-light-controlled drug release of black phosphorus
                                                                  nanostructure for cancer therapy. Proc Natl Acad Sci U S A,
               https://doi.org/10.1016/j.progpolymsci.2011.12.003  115(3):501–506.
            87.  Zheng Y, Ma W, Yang Z, et al., 2022, An ultralong   https://doi.org/10.1073/pnas.1714421115
               hydroxyapatite nanowire aerogel for rapid hemostasis and
               wound healing. Chem Eng J, 430:132912.          98.  Ghofrani A, Taghavi L, Khalilivavdareh B, et al., 2022,
                                                                  Additive manufacturing and advanced functionalities of
               https://doi.org/10.1016/j.cej.2021.132912          cardiac patches: A review. Eur Polym J, 174:111332.
            88.  Zhou LY, Fu J, He Y, 2020, A review of 3D printing   https://doi.org/10.1016/j.eurpolymj.2022.111332



            Volume 9 Issue 5 (2023)                        187                         https://doi.org/10.18063/ijb.757
   190   191   192   193   194   195   196   197   198   199   200