Page 193 - IJB-9-5
P. 193

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



               https://doi.org/10.1046/j.1524-475X.2002.10502.x   wound dressing materials—Fabrication, characterization
                                                                  and in vivo analysis. Eur J Pharm Sci, 97:106–112.
            36.  Homaeigohar S, Boccaccini  AR, 2020, Antibacterial
               biohybrid nanofibers for wound dressings. Acta Biomater,   https://doi.org/10.1016/j.ejps.2016.11.012
               107:25–49.
                                                               48.  Li Y, Zhang W, Niu J,  et al., 2012, Mechanism of
               https://doi.org/10.1016/j.actbio.2020.02.022       photogenerated  reactive  oxygen  species  and  correlation
            37.  Liang Y, He J, Guo B, 2021, Functional hydrogels as wound   with the antibacterial properties of engineered metal-oxide
               dressing to enhance wound healing. ACS Nano, 15(8):12687–  nanoparticles. ACS Nano, 6(6):5164–5173.
               12722.                                             https://doi.org/10.1021/nn300934k
               https://doi.org/10.1021/acsnano.1c04206         49.  Yu H, Gong W, Mei J,  et al., 2022, The efficacy of a
            38.  Wang F, Gao Y, Li H, et al., 2022, Effect of natural-based   paeoniflorin-sodium  alginate-gelatin  skin  scaffold  for
               biological hydrogels combined with growth factors on skin   the treatment of diabetic wound: An in vivo study in a rat
               wound healing. Nanotechnol Rev, 11(1):2493–2512.   model. Biomed Pharmacother, 151:113165.
               https://doi.org/10.1515/ntrev-2022-0122            https://doi.org/10.1016/j.biopha.2022.113165
            39.  Wang H, Xu Z, Zhao M, et al., 2021, Advances of hydrogel   50.  Seon GM, Lee MH, Koo MA, et al., 2021, A collagen-AS/
               dressings in diabetic wounds. Biomater Sci, 9(5):1530–1546.  epsilonPLL bilayered artificial substitute regulates anti-
                                                                  inflammation and infection for initial inflamed wound
               https://doi.org/10.1039/d0bm01747g                 healing. Biomater Sci, 9(20):6865–6878.
            40.  Brown MS, Ashley B, Koh A, 2018, Wearable technology for   https://doi.org/10.1039/d1bm01071a
               chronic wound monitoring: Current dressings, advancements,
               and future prospects. Front Bioeng Biotechnol, 6:47.  51.  Sadidi H, Hooshmand S, Ahmadabadi A, et al., 2020,
                                                                  Cerium oxide nanoparticles (nanoceria): Hopes in soft
               https://doi.org/10.3389/fbioe.2018.00047           tissue engineering. Molecules, 25(19):4559.
            41.  Tang N, Zheng Y, Cui D, et al., 2021, Multifunctional dressing   https://doi.org/10.3390/molecules25194559
               for wound diagnosis and rehabilitation. Adv Healthc Mater,
               10(22):e2101292.                                52.  Liang Y, Chen B, Li M, et al., 2020, injectable antimicrobial
                                                                  conductive hydrogels for wound disinfection and infectious
               https://doi.org/10.1002/adhm.202101292             wound healing. Biomacromolecules, 21(5):1841–1852.
            42.  Hao R, Cui Z, Zhang X, et al., 2021, Rational design and   https://doi.org/10.1021/acs.biomac.9b01732
               preparation of functional hydrogels for skin wound healing.
               Front Chem, 9:839055.                           53.  Tang Q,  Plank  TN, Zhu  T, et al.,  2019, Self-assembly of
                                                                  metallo-nucleoside hydrogels for injectable materials
               https://doi.org/10.3389/fchem.2021.839055          that promote wound closure.  ACS Appl Mater Interfaces,
            43.  Sharifi S, Hajipour MJ, Gould L, et al., 2021, Nanomedicine   11(22):19743–19750.
               in healing chronic wounds: Opportunities and Challenges.   https://doi.org/10.1021/acsami.9b02265
               Mol Pharm, 18(2):550–575.
                                                               54.  Xu Z, Han S, Gu Z, et al., 2020, advances and impact of
               https://doi.org/10.1021/acs.molpharmaceut.0c00346
                                                                  antioxidant hydrogel in chronic wound healing. Adv Healthc
            44.  Mao H, Yang L, Zhu H, et al., 2020, Recent advances and   Mater, 9(5):e1901502.
               challenges in materials for 3D bioprinting.  Prog Nat Sci   https://doi.org/10.1002/adhm.201901502
               Mater Int, 30(5):618–634.
                                                               55.  Tang P, Han L, Li P, et al., 2019, Mussel-inspired
               https://doi.org/10.1016/j.pnsc.2020.09.015
                                                                  electroactive and antioxidative scaffolds with incorporation
            45.  Bishop ES, Mostafa S, Pakvasa M, et al., 2017, 3-D bioprinting   of polydopamine-reduced graphene oxide for enhancing
               technologies in tissue engineering and regenerative medicine:   skin wound healing. ACS Appl Mater Interfaces, 11(8):7703–
               Current and future trends. Genes Dis, 4(4):185–195.  7714.
               https://doi.org/10.1016/j.gendis.2017.10.002       https://doi.org/10.1021/acsami.8b18931
            46.  Askari M, Afzali Naniz M, Kouhi M, et al., 2021, Recent   56.  Nguyen TTT, Ghosh C, Hwang SG, et al., 2013, Characteristics
               progress in extrusion 3D bioprinting of hydrogel biomaterials   of curcumin-loaded poly (lactic acid) nanofibers for wound
               for tissue regeneration: A comprehensive review with focus on   healing. J Mater Sci, 48(20):7125–7133.
               advanced fabrication techniques. Biomater Sci, 9(3):535–573.
                                                                  https://doi.org/10.1007/s10853-013-7527-y
               https://doi.org/10.1039/d0bm00973c
                                                               57.  Liu L, Hu E, Yu K, et al., 2021, Recent advances in
            47.  Vedakumari WS, Ayaz N, Karthick AS, et al., 2017, Quercetin   materials for hemostatic management.  Biomater Sci,
               impregnated chitosan-fibrin composite scaffolds as potential   9(22):7343–7378.

            Volume 9 Issue 5 (2023)                        185                         https://doi.org/10.18063/ijb.757
   188   189   190   191   192   193   194   195   196   197   198