Page 193 - IJB-9-5
P. 193
International Journal of Bioprinting Functional materials of 3D bioprinting for wound healing
https://doi.org/10.1046/j.1524-475X.2002.10502.x wound dressing materials—Fabrication, characterization
and in vivo analysis. Eur J Pharm Sci, 97:106–112.
36. Homaeigohar S, Boccaccini AR, 2020, Antibacterial
biohybrid nanofibers for wound dressings. Acta Biomater, https://doi.org/10.1016/j.ejps.2016.11.012
107:25–49.
48. Li Y, Zhang W, Niu J, et al., 2012, Mechanism of
https://doi.org/10.1016/j.actbio.2020.02.022 photogenerated reactive oxygen species and correlation
37. Liang Y, He J, Guo B, 2021, Functional hydrogels as wound with the antibacterial properties of engineered metal-oxide
dressing to enhance wound healing. ACS Nano, 15(8):12687– nanoparticles. ACS Nano, 6(6):5164–5173.
12722. https://doi.org/10.1021/nn300934k
https://doi.org/10.1021/acsnano.1c04206 49. Yu H, Gong W, Mei J, et al., 2022, The efficacy of a
38. Wang F, Gao Y, Li H, et al., 2022, Effect of natural-based paeoniflorin-sodium alginate-gelatin skin scaffold for
biological hydrogels combined with growth factors on skin the treatment of diabetic wound: An in vivo study in a rat
wound healing. Nanotechnol Rev, 11(1):2493–2512. model. Biomed Pharmacother, 151:113165.
https://doi.org/10.1515/ntrev-2022-0122 https://doi.org/10.1016/j.biopha.2022.113165
39. Wang H, Xu Z, Zhao M, et al., 2021, Advances of hydrogel 50. Seon GM, Lee MH, Koo MA, et al., 2021, A collagen-AS/
dressings in diabetic wounds. Biomater Sci, 9(5):1530–1546. epsilonPLL bilayered artificial substitute regulates anti-
inflammation and infection for initial inflamed wound
https://doi.org/10.1039/d0bm01747g healing. Biomater Sci, 9(20):6865–6878.
40. Brown MS, Ashley B, Koh A, 2018, Wearable technology for https://doi.org/10.1039/d1bm01071a
chronic wound monitoring: Current dressings, advancements,
and future prospects. Front Bioeng Biotechnol, 6:47. 51. Sadidi H, Hooshmand S, Ahmadabadi A, et al., 2020,
Cerium oxide nanoparticles (nanoceria): Hopes in soft
https://doi.org/10.3389/fbioe.2018.00047 tissue engineering. Molecules, 25(19):4559.
41. Tang N, Zheng Y, Cui D, et al., 2021, Multifunctional dressing https://doi.org/10.3390/molecules25194559
for wound diagnosis and rehabilitation. Adv Healthc Mater,
10(22):e2101292. 52. Liang Y, Chen B, Li M, et al., 2020, injectable antimicrobial
conductive hydrogels for wound disinfection and infectious
https://doi.org/10.1002/adhm.202101292 wound healing. Biomacromolecules, 21(5):1841–1852.
42. Hao R, Cui Z, Zhang X, et al., 2021, Rational design and https://doi.org/10.1021/acs.biomac.9b01732
preparation of functional hydrogels for skin wound healing.
Front Chem, 9:839055. 53. Tang Q, Plank TN, Zhu T, et al., 2019, Self-assembly of
metallo-nucleoside hydrogels for injectable materials
https://doi.org/10.3389/fchem.2021.839055 that promote wound closure. ACS Appl Mater Interfaces,
43. Sharifi S, Hajipour MJ, Gould L, et al., 2021, Nanomedicine 11(22):19743–19750.
in healing chronic wounds: Opportunities and Challenges. https://doi.org/10.1021/acsami.9b02265
Mol Pharm, 18(2):550–575.
54. Xu Z, Han S, Gu Z, et al., 2020, advances and impact of
https://doi.org/10.1021/acs.molpharmaceut.0c00346
antioxidant hydrogel in chronic wound healing. Adv Healthc
44. Mao H, Yang L, Zhu H, et al., 2020, Recent advances and Mater, 9(5):e1901502.
challenges in materials for 3D bioprinting. Prog Nat Sci https://doi.org/10.1002/adhm.201901502
Mater Int, 30(5):618–634.
55. Tang P, Han L, Li P, et al., 2019, Mussel-inspired
https://doi.org/10.1016/j.pnsc.2020.09.015
electroactive and antioxidative scaffolds with incorporation
45. Bishop ES, Mostafa S, Pakvasa M, et al., 2017, 3-D bioprinting of polydopamine-reduced graphene oxide for enhancing
technologies in tissue engineering and regenerative medicine: skin wound healing. ACS Appl Mater Interfaces, 11(8):7703–
Current and future trends. Genes Dis, 4(4):185–195. 7714.
https://doi.org/10.1016/j.gendis.2017.10.002 https://doi.org/10.1021/acsami.8b18931
46. Askari M, Afzali Naniz M, Kouhi M, et al., 2021, Recent 56. Nguyen TTT, Ghosh C, Hwang SG, et al., 2013, Characteristics
progress in extrusion 3D bioprinting of hydrogel biomaterials of curcumin-loaded poly (lactic acid) nanofibers for wound
for tissue regeneration: A comprehensive review with focus on healing. J Mater Sci, 48(20):7125–7133.
advanced fabrication techniques. Biomater Sci, 9(3):535–573.
https://doi.org/10.1007/s10853-013-7527-y
https://doi.org/10.1039/d0bm00973c
57. Liu L, Hu E, Yu K, et al., 2021, Recent advances in
47. Vedakumari WS, Ayaz N, Karthick AS, et al., 2017, Quercetin materials for hemostatic management. Biomater Sci,
impregnated chitosan-fibrin composite scaffolds as potential 9(22):7343–7378.
Volume 9 Issue 5 (2023) 185 https://doi.org/10.18063/ijb.757

