Page 197 - IJB-9-5
P. 197

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



               https://doi.org/10.1002/biot.200600081          133. Wang C, Jiang X, Kim HJ, et al., 2022, Flexible patch with
                                                                  printable and antibacterial conductive hydrogel electrodes
            122. Saunders RE, Derby B, 2014, Inkjet printing biomaterials   for accelerated wound healing. Biomaterials, 285:121479.
               for tissue engineering: Bioprinting.  Int  Mater  Rev, 59(8):
               430–448.                                           https://doi.org/10.1016/j.biomaterials.2022.121479
               https://doi.org/10.1179/1743280414y.0000000040  134. Lei  Q,  He  D,  Ding  L, et al.,  2022,  Microneedle  patches
                                                                  integrated with biomineralized melanin nanoparticles for
            123. Gu Z, Fu J, Lin H, et al., 2020, Development of 3D bioprinting:
               From printing methods to biomedical applications. Asian J   simultaneous skin tumor photothermal therapy and wound
               Pharm Sci, 15(5):529–557.                          healing. Adv Funct Mater, 32(22):2113269.
               https://doi.org/10.1016/j.ajps.2019.11.003         https://doi.org/10.1002/adfm.202113269
            124. Decante G, Costa JB, Silva-Correia J, et al., 2021, Engineering   135. Alizadehgiashi  M,  Nemr  CR, Chekini  M,  et al.,  2021,
               bioinks for 3D bioprinting. Biofabrication, 13(3):032001.  Multifunctional 3D-printed wound dressings.  ACS Nano,
                                                                  15(7):12375–12387.
               https://doi.org/10.1088/1758-5090/abec2c
                                                                  https://doi.org/10.1021/acsnano.1c04499
            125. He P, Zhao J, Zhang J, et al., 2018, Bioprinting of skin   136. Cereceres S, Lan Z, Bryan L, et al., 2019, Bactericidal activity
               constructs for wound healing. Burns Trauma, 6:5.
                                                                  of 3D-printed hydrogel dressing loaded with gallium
               https://doi.org/10.1186/s41038-017-0104-x          maltolate. APL Bioeng, 3(2):026102.
            126. Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin   https://doi.org/10.1063/1.5088801
               printer: In situ formation of planar biomaterials and tissues.   137. Wu Z, Hong Y, 2019, Combination of the silver-ethylene
               Lab Chip, 18(10):1440–1451.                        interaction and 3D printing to develop antibacterial
               https://doi.org/10.1039/c7lc01236e                 superporous hydrogels for wound management. ACS Appl
                                                                  Mater Interfaces, 11(37):33734–33747.
            127. Aljghami ME, Saboor S, Amini-Nik S, 2019, Emerging
               innovative wound dressings. Ann Biomed Eng, 47(3):659–675.  https://doi.org/10.1021/acsami.9b14090
                                                               138. Yang Z, Ren X, Liu Y, 2021, Multifunctional 3D printed
               https://doi.org/10.1007/s10439-018-02186-w
                                                                  porous GelMA/xanthan gum based dressing with biofilm
            128. Wang X, Qi J, Zhang W, et al., 2021, 3D-printed antioxidant   control and wound healing activity. Mater Sci Eng C Mater
               antibacterial carboxymethyl cellulose/epsilon-polylysine   Biol Appl, 131:112493.
               hydrogel promoted skin wound repair. Int J Biol Macromol,   https://doi.org/10.1016/j.msec.2021.112493
               187:91–104.
                                                               139. Krishnan KA, Thomas S, 2019, Recent advances on herb-
               https://doi.org/10.1016/j.ijbiomac.2021.07.115     derived  constituents-incorporated  wound-Dressing

            129. Deng X, Gould M, Ali MA, 2022, A review of current   materials: A review. Polym Adv Technol, 30(4):823–838.
               advancements for wound healing: Biomaterial applications   https://doi.org/10.1002/pat.4540
               and medical devices. J Biomed Mater Res B Appl Biomater,
               110(11):2542–2573.                              140. Dhivya S, Padma VV, Santhini E, 2015, Wound dressings—A
                                                                  review. Biomedicine (Taipei), 5(4):22.
               https://doi.org/10.1002/jbm.b.35086
                                                                  https://doi.org/10.7603/s40681-015-0022-9
            130. Zhao H, Xu J, Yuan H, et al., 2022, 3D printing of artificial
               skin patches with bioactive and optically active polymer   141. Zhu J, Jiang G, Song G, et al., 2019, Incorporation of
               materials for anti-infection and augmenting wound repair.   ZnO/Bioactive glass nanoparticles into alginate/chitosan
               Mater Horiz, 9(1):342–349.                         composite hydrogels for wound closure.  ACS Appl Biol
                                                                  Mater, 2(11):5042–5052.
               https://doi.org/10.1039/d1mh00508a
                                                                  https://doi.org/10.1021/acsabm.9b00727
            131. Yang  Z,  Ren  X,  Liu  Y,  2021,  N-halamine  modified  ceria   142. Teoh  JH,  Mozhi  A,  Sunil  V, et al.,  2021,  3D  printing
               nanoparticles: Antibacterial response and accelerated   personalized, photocrosslinkable hydrogel wound dressings
               wound healing application via a 3D printed scaffold. Compos   for the treatment of thermal burns.  Adv Funct Mater,
               Part B Eng, 227:109390.                            31(48):2105932.
               https://doi.org/10.1016/j.compositesb.2021.109390  https://doi.org/10.1002/adfm.202105932

            132. He X, Yang S, Liu C, et al., 2020, Integrated wound   143. Vargas AJ, Harris CC, 2016, Biomarker development in the
               recognition in bandages for intelligent treatment.  Adv   precision medicine era: Lung cancer as a case study. Nat Rev
               Healthc Mater, 9(22):e2000941.                     Cancer, 16(8):525–537.

               https://doi.org/10.1002/adhm.202000941             https://doi.org/10.1038/nrc.2016.56

            Volume 9 Issue 5 (2023)                        189                         https://doi.org/10.18063/ijb.757
   192   193   194   195   196   197   198   199   200   201   202