Page 196 - IJB-9-5
P. 196

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



            99.  Han S, Wu J, 2022, Three-dimensional (3D) scaffolds as   110. Tan SH, Ngo ZH, Sci DB, et al., 2022, Recent advances in
               powerful weapons for tumor immunotherapy. Bioact Mater,   the design of three-dimensional and bioprinted scaffolds
               17:300–319.                                        for full-thickness wound healing. Tissue Eng. Part B, Rev,
                                                                  28(1):160–181.
               https://doi.org/10.1016/j.bioactmat.2022.01.020
                                                                  https://doi.org/10.1089/ten.TEB.2020.0339
            100. Bhar B, Chouhan D, Pai N, et al., 2021, Harnessing
               multifaceted next-generation technologies for improved   111. Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
               skin wound healing. ACS Appl Biol Mater, 4(11):7738–7763.  bioprinting of engineered tissue with high cell density and
                                                                  microscale organization. Biomaterials, 31(28):7250–7256.
               https://doi.org/10.1021/acsabm.1c00880
                                                                  https://doi.org/10.1016/j.biomaterials.2010.05.055
            101. Lee M, Rizzo R, Surman F, et al., 2020, Guiding lights:
               Tissue bioprinting using photoactivated materials.  Chem   112. Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional
               Rev, 120(19):10950–11027.                          biomaterials for tissue engineering.  Curr Opin Biotechnol,
                                                                  40:103–112.
               https://doi.org/10.1021/acs.chemrev.0c00077
                                                                  https://doi.org/10.1016/j.copbio.2016.03.014
            102. Long J, Etxeberria AE, Nand AV, et al., 2019, A 3D printed
               chitosan-pectin hydrogel wound dressing for lidocaine   113. Song Y, Chen X, Zhou J, et al., 2022, Research on performance
               hydrochloride delivery.  Mater Sci Eng C Mater Biol Appl,   of passive heat supply tower based on the back propagation
               104:109873.                                        neural network. Energy, 250:123762.
               https://doi.org/10.1016/j.msec.2019.109873         https://doi.org/10.1016/j.energy.2022.123762
            103. Park J, Wetzel I, Dreau D, et al., 2018, 3D miniaturization   114. Xu J, Zheng S, Hu X, et al., 2020, Advances in the research of
               of human organs for drug discovery.  Adv Healthc Mater,   bioinks based on natural collagen, polysaccharide and their
               7(2):1700551.                                      derivatives for skin 3D bioprinting. Polymers, 12(6):1237.
               https://doi.org/10.1002/adhm.201700551             https://doi.org/10.3390/polym12061237
            104. Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive   115. Chen A, Qu C, Shi Y, et al., 2020, Manufacturing strategies
               review on droplet-based bioprinting: Past, present and   for solid electrolyte in batteries. Front Energy Res, 8:571440.
               future. Biomaterials, 102:20–42.
                                                                  https://doi.org/10.3389/fenrg.2020.571440
               https://doi.org/10.1016/j.biomaterials.2016.06.012
                                                               116. Antezana PE, Municoy S, Alvarez-Echazu MI, et al.,
            105. Gao C, Lu C, Jian Z, et al., 2021, 3D bioprinting for   2022, The 3D bioprinted scaffolds for wound healing.
               fabricating artificial skin tissue. Colloids Surf B Biointerfaces,   Pharmaceutics, 14(2):464.
               208:112041.
                                                                  https://doi.org/10.3390/pharmaceutics14020464
               https://doi.org/10.1016/j.colsurfb.2021.112041
                                                               117. Augustine R, 2018, Skin bioprinting: A novel approach for
            106. Kim JH, Yoo JJ, Lee SJ, 2016, Three-dimensional cell-based   creating artificial skin from synthetic and natural building
               bioprinting for soft tissue regeneration.  Tissue Eng Regen   blocks. Prog Biomater, 7(2):77–92.
               Med, 13(6):647–662.
                                                                  https://doi.org/10.1007/s40204-018-0087-0
               https://doi.org/10.1007/s13770-016-0133-8
                                                               118. Cui X, Dean D, Ruggeri ZM, et al., 2010, Cell damage
            107. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D   evaluation of thermal inkjet printed Chinese hamster ovary
               bioprinting for biomedical devices and tissue engineering:   cells. Biotechnol Bioeng, 106(6):963–969.
               A review of recent trends and advances.  Bioact Mater,
               3(2):144–156.                                      https://doi.org/10.1002/bit.22762
               https://doi.org/10.1016/j.bioactmat.2017.11.008  119. Ostrovidov S, Salehi S, Costantini M, et al., 2019, 3D
                                                                  bioprinting in skeletal muscle tissue engineering.  Small,
            108. Wang Y, Yuan X, Yao B, et al., 2022, Tailoring bioinks of   15(24):e1805530.
               extrusion-based bioprinting for cutaneous wound healing.
               Bioact Mater, 17:178–194.                          https://doi.org/10.1002/smll.201805530
               https://doi.org/10.1016/j.bioactmat.2022.01.024  120. Gao G, Cui X, 2016, Three-dimensional bioprinting in tissue
                                                                  engineering and regenerative medicine.  Biotechnol Lett,
            109. Fairag R, Rosenzweig DH, Ramirez-Garcialuna JL, et al.,
               2019,  Three-dimensional  printed  polylactic  acid  scaffolds   38(2):203–211.
               promote bone-like matrix deposition in vitro.  ACS Appl   https://doi.org/10.1007/s10529-015-1975-1
               Mater Interfaces, 11(17):15306–15315.
                                                               121. Boland T, Xu T, Damon B, et al., 2006, Application of inkjet
               https://doi.org/10.1021/acsami.9b02502             printing to tissue engineering. Biotechnol J, 1(9):910–917.



            Volume 9 Issue 5 (2023)                        188                         https://doi.org/10.18063/ijb.757
   191   192   193   194   195   196   197   198   199   200   201