Page 194 - IJB-9-5
P. 194
International Journal of Bioprinting Functional materials of 3D bioprinting for wound healing
https://doi.org/10.1039/d1bm01293b https://doi.org/10.1021/es060999b
58. Du X, Wu L, Yan H, et al., 2021, Microchannelled alkylated 68. Guo Z, Zhang Z, Zhang N, et al., 2022, A mg(2+)/
chitosan sponge to treat noncompressible hemorrhages and polydopamine composite hydrogel for the acceleration of
facilitate wound healing. Nat Commun, 12(1):4733. infected wound healing. Bioact Mater, 15:203–213.
https://doi.org/10.1038/s41467-021-24972-2 https://doi.org/10.1016/j.bioactmat.2021.11.036
59. Futalan CM, Kan C-C, Dalida ML, et al., 2011, Comparative 69. Subramanian AK, Prabhakar R, Vikram NR, et al.,
and competitive adsorption of copper, lead, and nickel 2022, In vitro anti-inflammatory activity of silymarin/
using chitosan immobilized on bentonite. Carbohydr Polym, hydroxyapatite/chitosan nanocomposites and its cytotoxic
83(2):528–536. effect using brine shrimp lethality assay. J Popul Ther Clin
Pharmacol, 28(2):e71–e77.
https://doi.org/10.1016/j.carbpol.2010.08.013
https://doi.org/10.47750/jptcp.2022.874
60. Biranje SS, Sun J, Cheng L, et al., 2022, Development of
cellulose nanofibril/casein-based 3D composite hemostasis 70 Kim H, Kim BH, Huh BK, et al., 2017, Surgical suture
scaffold for potential wound-healing application. ACS Appl releasing macrophage-targeted drug-loaded nanoparticles
Mater Interfaces, 14(3):3792–3808. for an enhanced anti-inflammatory effect. Biomater Sci,
5(8):1670–1677.
https://doi.org/10.1021/acsami.1c21039
https://doi.org/10.1039/c7bm00345e
61. Gao D, Wang Z, Wu Z, et al., 2020, 3D-printing of solvent
exchange deposition modeling (SEDM) for a bilayered 71. He L, Hong G, Zhou L, et al., 2019, Asiaticoside, a
flexible skin substitute of poly (lactide-co-glycolide) with component of centella asiatica attenuates RANKL-induced
bioorthogonally engineered EGF. Mater Sci Eng C Mater Biol osteoclastogenesis via NFATc1 and NF-kappaB signaling
Appl, 112:110942. pathways. J Cell Physiol, 234(4):4267–4276.
https://doi.org/10.1016/j.msec.2020.110942 https://doi.org/10.1002/jcp.27195
62. Lee WH, Ren H, Wu J, et al., 2016, Electrochemically 72. Talikowska M, Fu X, Lisak G, 2019, Application of
modulated nitric oxide release from flexible silicone rubber conducting polymers to wound care and skin tissue
patch: Antimicrobial activity for potential wound healing engineering: A review. Biosens Bioelectron, 135:50–63.
applications. ACS Biomater Sci Eng, 2(9):1432–1435.
https://doi.org/10.1016/j.bios.2019.04.001
https://doi.org/10.1021/acsbiomaterials.6b00360
73. Guo B, Ma PX, 2018, Conducting polymers for tissue
63. Sajadimajd S, Bahramsoltani R, Iranpanah A, et al., 2020, engineering. Biomacromolecules, 19(6):1764–1782.
Advances on natural polyphenols as anticancer agents for
skin cancer. Pharmacol Res, 151:104584. https://doi.org/10.1021/acs.biomac.8b00276
https://doi.org/10.1016/j.phrs.2019.104584 74. Zhou L, Zheng H, Wang S, et al., 2020, Biodegradable
conductive multifunctional branched poly(glycerol-amino
64. Bal-Ozturk A, Ozkahraman B, Ozbas Z, et al., 2021, acid)-based scaffolds for tumor/infection-impaired skin
Advancements and future directions in the antibacterial multimodal therapy. Biomaterials, 262:120300.
wound dressings—A review. J Biomed Mater Res B Appl
Biomater, 109(5):703–716. https://doi.org/10.1016/j.biomaterials.2020.120300
https://doi.org/10.1002/jbm.b.34736 75. Ou Q, Zhang S, Fu C, et al., 2021, More natural more
better: Triple natural anti-oxidant puerarin/ferulic acid/
65. Fang H, Wang J, Li L, et al., 2019, A novel high-strength polydopamine incorporated hydrogel for wound healing. J
poly(ionic liquid)/PVA hydrogel dressing for antibacterial Nanobiotechnology, 19(1):237.
applications. Chem Eng J, 365:153–164.
https://doi.org/10.1186/s12951-021-00973-7
https://doi.org/10.1016/j.cej.2019.02.030
76. Ren Y, Zhang D, He Y, et al., 2021, Injectable and
66. Zheng L, Li S, Luo J, et al., 2020, Latest advances on bacterial antioxidative HT/QGA hydrogel for potential application in
cellulose-based antibacterial materials as wound dressings. wound healing. Gels, 7(4):204.
Front Bioeng Biotechnol, 8:593768.
https://doi.org/10.3390/gels7040204
https://doi.org/10.3389/fbioe.2020.593768
77. Zhao X, Wu H, Guo B, et al., 2017, Antibacterial anti-oxidant
67. Thill A, Zeyons O, Spalla O, et al., 2006, Cytotoxicity of electroactive injectable hydrogel as self-healing wound
CeO nanoparticles for Escherichia coli. Physico-chemical dressing with hemostasis and adhesiveness for cutaneous
2
insight of the cytotoxicity mechanism. Environ Sci Technol, wound healing. Biomaterials, 122:34–47.
40(19):6151–6156.
Volume 9 Issue 5 (2023) 186 https://doi.org/10.18063/ijb.757

