Page 194 - IJB-9-5
P. 194

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



               https://doi.org/10.1039/d1bm01293b                 https://doi.org/10.1021/es060999b
            58.  Du X, Wu L, Yan H, et al., 2021, Microchannelled alkylated   68.  Guo Z, Zhang Z, Zhang N, et al., 2022, A mg(2+)/
               chitosan sponge to treat noncompressible hemorrhages and   polydopamine composite hydrogel for the acceleration of
               facilitate wound healing. Nat Commun, 12(1):4733.  infected wound healing. Bioact Mater, 15:203–213.
               https://doi.org/10.1038/s41467-021-24972-2         https://doi.org/10.1016/j.bioactmat.2021.11.036
            59.  Futalan CM, Kan C-C, Dalida ML, et al., 2011, Comparative   69.  Subramanian AK, Prabhakar R, Vikram NR, et al.,
               and competitive adsorption of copper, lead, and nickel   2022, In vitro anti-inflammatory activity of silymarin/
               using chitosan immobilized on bentonite. Carbohydr Polym,   hydroxyapatite/chitosan nanocomposites and its cytotoxic
               83(2):528–536.                                     effect using brine shrimp lethality assay. J Popul Ther Clin
                                                                  Pharmacol, 28(2):e71–e77.
               https://doi.org/10.1016/j.carbpol.2010.08.013
                                                                  https://doi.org/10.47750/jptcp.2022.874
            60.  Biranje  SS,  Sun  J,  Cheng  L, et al.,  2022,  Development  of
               cellulose nanofibril/casein-based 3D composite hemostasis   70  Kim H, Kim BH, Huh BK, et al., 2017, Surgical suture
               scaffold for potential wound-healing application. ACS Appl   releasing macrophage-targeted drug-loaded nanoparticles
               Mater Interfaces, 14(3):3792–3808.                 for an enhanced anti-inflammatory effect.  Biomater Sci,
                                                                  5(8):1670–1677.
               https://doi.org/10.1021/acsami.1c21039
                                                                  https://doi.org/10.1039/c7bm00345e
            61.  Gao D, Wang Z, Wu Z, et al., 2020, 3D-printing of solvent
               exchange deposition modeling (SEDM) for a bilayered   71.  He L, Hong G, Zhou L, et al., 2019, Asiaticoside, a
               flexible skin substitute of poly (lactide-co-glycolide) with   component of centella asiatica attenuates RANKL-induced
               bioorthogonally engineered EGF. Mater Sci Eng C Mater Biol   osteoclastogenesis via NFATc1 and NF-kappaB signaling
               Appl, 112:110942.                                  pathways. J Cell Physiol, 234(4):4267–4276.
               https://doi.org/10.1016/j.msec.2020.110942         https://doi.org/10.1002/jcp.27195
            62.  Lee WH, Ren H, Wu J,  et  al., 2016, Electrochemically   72.  Talikowska M, Fu X, Lisak G, 2019, Application of
               modulated nitric oxide release from flexible silicone rubber   conducting polymers to wound care and skin tissue
               patch: Antimicrobial activity for potential wound healing   engineering: A review. Biosens Bioelectron, 135:50–63.
               applications. ACS Biomater Sci Eng, 2(9):1432–1435.
                                                                  https://doi.org/10.1016/j.bios.2019.04.001
               https://doi.org/10.1021/acsbiomaterials.6b00360
                                                               73.  Guo B, Ma PX, 2018, Conducting polymers for tissue
            63.  Sajadimajd S, Bahramsoltani R, Iranpanah A, et al., 2020,   engineering. Biomacromolecules, 19(6):1764–1782.
               Advances on natural polyphenols as anticancer agents for
               skin cancer. Pharmacol Res, 151:104584.            https://doi.org/10.1021/acs.biomac.8b00276
               https://doi.org/10.1016/j.phrs.2019.104584      74.  Zhou L, Zheng H, Wang S, et al., 2020, Biodegradable
                                                                  conductive multifunctional branched poly(glycerol-amino
            64.  Bal-Ozturk  A,  Ozkahraman  B,  Ozbas  Z, et al.,  2021,   acid)-based scaffolds for tumor/infection-impaired skin
               Advancements and future directions in the antibacterial   multimodal therapy. Biomaterials, 262:120300.
               wound  dressings—A  review.  J Biomed Mater Res B Appl
               Biomater, 109(5):703–716.                          https://doi.org/10.1016/j.biomaterials.2020.120300
               https://doi.org/10.1002/jbm.b.34736             75.  Ou Q, Zhang S, Fu C, et al., 2021, More natural more
                                                                  better: Triple natural anti-oxidant puerarin/ferulic acid/
            65.  Fang H, Wang J, Li L, et al., 2019, A novel high-strength   polydopamine incorporated hydrogel for wound healing. J
               poly(ionic  liquid)/PVA  hydrogel  dressing  for  antibacterial   Nanobiotechnology, 19(1):237.
               applications. Chem Eng J, 365:153–164.
                                                                  https://doi.org/10.1186/s12951-021-00973-7
               https://doi.org/10.1016/j.cej.2019.02.030
                                                               76.  Ren Y, Zhang D, He Y, et al., 2021, Injectable and
            66.  Zheng L, Li S, Luo J, et al., 2020, Latest advances on bacterial   antioxidative HT/QGA hydrogel for potential application in
               cellulose-based antibacterial materials as wound dressings.   wound healing. Gels, 7(4):204.
               Front Bioeng Biotechnol, 8:593768.
                                                                  https://doi.org/10.3390/gels7040204
               https://doi.org/10.3389/fbioe.2020.593768
                                                               77.  Zhao X, Wu H, Guo B, et al., 2017, Antibacterial anti-oxidant
            67.  Thill A, Zeyons O, Spalla O,  et al., 2006, Cytotoxicity of   electroactive  injectable  hydrogel  as  self-healing  wound
               CeO   nanoparticles  for  Escherichia coli.  Physico-chemical   dressing with hemostasis and adhesiveness for cutaneous
                   2
               insight of the cytotoxicity mechanism. Environ Sci Technol,   wound healing. Biomaterials, 122:34–47.
               40(19):6151–6156.


            Volume 9 Issue 5 (2023)                        186                         https://doi.org/10.18063/ijb.757
   189   190   191   192   193   194   195   196   197   198   199