Page 198 - IJB-9-5
P. 198

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



            144. Arnedos M, Vicier C, Loi S, et al., 2015, Precision medicine   154. Zhang Y, Wang B, Hu J, et al., 2021, 3D composite bioprinting
               for metastatic breast cancer—Limitations and solutions. Nat   for fabrication of artificial biological tissues. Int J Bioprint,
               Rev Clin Oncol, 12(12):693–704.                    7(1):299.
               https://doi.org/10.1038/nrclinonc.2015.123         https://doi.org/10.18063/ijb.v7i1.299
            145. Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al.,   155. Kharaziha M, Baidya A, Annabi N, 2021, Rational design of
               2020, 3D printing of silver-doped polycaprolactone-  immunomodulatory hydrogels for chronic wound healing.
               poly(propylene succinate) composite scaffolds for skin   Adv Mater, 33(39):e2100176.
               tissue engineering. Biomed Mater, 15(3):035015.
                                                                  https://doi.org/10.1002/adma.202100176
               https://doi.org/10.1088/1748-605X/ab7417
                                                               156. Wang Y, Niu W, Qu X, et al., 2022, Bioactive anti-inflammatory
            146. Xia S, Weng T, Jin R, et al., 2022, Curcumin-incorporated 3D   thermocatalytic  nanometal-polyphenol  polypeptide
               bioprinting gelatin methacryloyl hydrogel reduces reactive   scaffolds  for MRSA-infection/tumor postsurgical  tissue
               oxygen species-induced adipose-derived stem cell apoptosis   repair. ACS Appl Mater Interfaces, 14(4):4946–4958.
               and improves implanting survival in diabetic wounds. Burns
               Trauma, 10:tkac001.                                https://doi.org/10.1021/acsami.1c21082
                                                               157. Xi Y, Ge J, Wang M, et al., 2020, Bioactive anti-inflammatory,
               https://doi.org/10.1093/burnst/tkac001
                                                                  antibacterial, antioxidative silicon-based nanofibrous
            147. Li  T,  Ma  H,  Ma  H,  et  al.,  2019,  Mussel-inspired   dressing enables cutaneous tumor photothermo-chemo
               nanostructures  potentiate  the  immunomodulatory  therapy and infection-induced wound healing. ACS Nano,
               properties and angiogenesis of mesenchymal stem cells. ACS   14(3):2904–2916.
               Appl Mater Interfaces, 11(19):17134–17146.
                                                                  https://doi.org/10.1021/acsnano.9b07173
               https://doi.org/10.1021/acsami.8b22017
                                                               158. Piola B, Sabbatini M, Gino S, et al., 2022, 3D bioprinting
            148. Ma H, Zhou Q, Chang J, et al., 2019, Grape seed-inspired   of gelatin-xanthan gum composite hydrogels for growth of
               smart hydrogel scaffolds for melanoma therapy and wound   human skin cells. Int J Mol Sci, 23(1):539.
               healing. ACS Nano, 13(4):4302–4311.                https://doi.org/10.3390/ijms23010539
               https://doi.org/10.1021/acsnano.8b09496         159. Tsegay F, Elsherif M, Butt H, 2022, Smart 3D printed hydrogel
            149. Bergonzi C, Bianchera A, Remaggi G, et al., 2021,   skin wound bandages: A review. Polymers, 14(5):1012.
               Biocompatible 3D printed chitosan-based scaffolds   https://doi.org/10.3390/polym14051012
               containing α-tocopherol showing antioxidant and
               antimicrobial activity. Appl Sci, 11(16):7253.  160. Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D
                                                                  printing. Biomater Res, 22:11.
               https://doi.org/10.3390/app11167253
                                                                  https://doi.org/10.1186/s40824-018-0122-1
            150. Ma C, Jiang L, Wang Y, et al., 2019, 3D printing of
               conductive tissue engineering scaffolds containing   161. Dey M, Ozbolat IT, 2020, 3D bioprinting of cells, tissues and
               polypyrrole nanoparticles with different morphologies and   organs. Sci Rep, 10(1):14023.
               concentrations. Materials (Basel), 12(15):2491.    https://doi.org/10.1038/s41598-020-70086-y
               https://doi.org/10.3390/ma12152491              162. Parak A, Pradeep P, Du Toit LC, et al., 2019, Functionalizing
            151. Xu J, Fang H, Su Y, et al., 2022, A 3D bioprinted   bioinks for 3D bioprinting applications. Drug Discov Today,
               decellularized  extracellular  matrix/gelatin/quaternized  24(1):198–205.
               chitosan scaffold assembling with poly(ionic liquid)s for   https://doi.org/10.1016/j.drudis.2018.09.012
               skin tissue engineering. Int J Biol Macromol, 220:1253–1266.
                                                               163. Xie Z, Gao M, Lobo AO, et al., 2020, 3D bioprinting in tissue
               https://doi.org/10.1016/j.ijbiomac.2022.08.149     engineering for medical applications: The classic and the
                                                                  hybrid. Polymers, 12(8):1717.
            152. Chang P, Li S, Sun Q, et al., 2022, Large full-thickness
               wounded skin regeneration using 3D-printed elastic   https://doi.org/10.3390/polym12081717
               scaffold with minimal functional unit of skin. J Tissue Eng,   164. Agarwala S, 2016, A perspective on 3D bioprinting technology:
               13:20417314211063022.                              Present and future. Am J Eng Appl Sci, 9(4):985–990.
               https://doi.org/10.1177/20417314211063022          https://doi.org/10.3844/ajeassp.2016.985.990
            153. Elemoso A, Shalunov G, Balakhovsky YM, et al., 2020, 3D   165. Daikuara LY, Chen X, Yue Z, et al., 2021, 3D bioprinting
               Bioprinting: The roller coaster ride to commercialization.   constructs to facilitate skin regeneration. Adv Funct Mater,
               Int J Bioprint, 6(3):301.                          32(3):2105080.
               https://doi.org/10.18063/ijb.v6i3.301              https://doi.org/10.1002/adfm.202105080


            Volume 9 Issue 5 (2023)                        190                         https://doi.org/10.18063/ijb.757
   193   194   195   196   197   198   199   200   201   202   203