Page 198 - IJB-9-5
P. 198
International Journal of Bioprinting Functional materials of 3D bioprinting for wound healing
144. Arnedos M, Vicier C, Loi S, et al., 2015, Precision medicine 154. Zhang Y, Wang B, Hu J, et al., 2021, 3D composite bioprinting
for metastatic breast cancer—Limitations and solutions. Nat for fabrication of artificial biological tissues. Int J Bioprint,
Rev Clin Oncol, 12(12):693–704. 7(1):299.
https://doi.org/10.1038/nrclinonc.2015.123 https://doi.org/10.18063/ijb.v7i1.299
145. Afghah F, Ullah M, Seyyed Monfared Zanjani J, et al., 155. Kharaziha M, Baidya A, Annabi N, 2021, Rational design of
2020, 3D printing of silver-doped polycaprolactone- immunomodulatory hydrogels for chronic wound healing.
poly(propylene succinate) composite scaffolds for skin Adv Mater, 33(39):e2100176.
tissue engineering. Biomed Mater, 15(3):035015.
https://doi.org/10.1002/adma.202100176
https://doi.org/10.1088/1748-605X/ab7417
156. Wang Y, Niu W, Qu X, et al., 2022, Bioactive anti-inflammatory
146. Xia S, Weng T, Jin R, et al., 2022, Curcumin-incorporated 3D thermocatalytic nanometal-polyphenol polypeptide
bioprinting gelatin methacryloyl hydrogel reduces reactive scaffolds for MRSA-infection/tumor postsurgical tissue
oxygen species-induced adipose-derived stem cell apoptosis repair. ACS Appl Mater Interfaces, 14(4):4946–4958.
and improves implanting survival in diabetic wounds. Burns
Trauma, 10:tkac001. https://doi.org/10.1021/acsami.1c21082
157. Xi Y, Ge J, Wang M, et al., 2020, Bioactive anti-inflammatory,
https://doi.org/10.1093/burnst/tkac001
antibacterial, antioxidative silicon-based nanofibrous
147. Li T, Ma H, Ma H, et al., 2019, Mussel-inspired dressing enables cutaneous tumor photothermo-chemo
nanostructures potentiate the immunomodulatory therapy and infection-induced wound healing. ACS Nano,
properties and angiogenesis of mesenchymal stem cells. ACS 14(3):2904–2916.
Appl Mater Interfaces, 11(19):17134–17146.
https://doi.org/10.1021/acsnano.9b07173
https://doi.org/10.1021/acsami.8b22017
158. Piola B, Sabbatini M, Gino S, et al., 2022, 3D bioprinting
148. Ma H, Zhou Q, Chang J, et al., 2019, Grape seed-inspired of gelatin-xanthan gum composite hydrogels for growth of
smart hydrogel scaffolds for melanoma therapy and wound human skin cells. Int J Mol Sci, 23(1):539.
healing. ACS Nano, 13(4):4302–4311. https://doi.org/10.3390/ijms23010539
https://doi.org/10.1021/acsnano.8b09496 159. Tsegay F, Elsherif M, Butt H, 2022, Smart 3D printed hydrogel
149. Bergonzi C, Bianchera A, Remaggi G, et al., 2021, skin wound bandages: A review. Polymers, 14(5):1012.
Biocompatible 3D printed chitosan-based scaffolds https://doi.org/10.3390/polym14051012
containing α-tocopherol showing antioxidant and
antimicrobial activity. Appl Sci, 11(16):7253. 160. Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D
printing. Biomater Res, 22:11.
https://doi.org/10.3390/app11167253
https://doi.org/10.1186/s40824-018-0122-1
150. Ma C, Jiang L, Wang Y, et al., 2019, 3D printing of
conductive tissue engineering scaffolds containing 161. Dey M, Ozbolat IT, 2020, 3D bioprinting of cells, tissues and
polypyrrole nanoparticles with different morphologies and organs. Sci Rep, 10(1):14023.
concentrations. Materials (Basel), 12(15):2491. https://doi.org/10.1038/s41598-020-70086-y
https://doi.org/10.3390/ma12152491 162. Parak A, Pradeep P, Du Toit LC, et al., 2019, Functionalizing
151. Xu J, Fang H, Su Y, et al., 2022, A 3D bioprinted bioinks for 3D bioprinting applications. Drug Discov Today,
decellularized extracellular matrix/gelatin/quaternized 24(1):198–205.
chitosan scaffold assembling with poly(ionic liquid)s for https://doi.org/10.1016/j.drudis.2018.09.012
skin tissue engineering. Int J Biol Macromol, 220:1253–1266.
163. Xie Z, Gao M, Lobo AO, et al., 2020, 3D bioprinting in tissue
https://doi.org/10.1016/j.ijbiomac.2022.08.149 engineering for medical applications: The classic and the
hybrid. Polymers, 12(8):1717.
152. Chang P, Li S, Sun Q, et al., 2022, Large full-thickness
wounded skin regeneration using 3D-printed elastic https://doi.org/10.3390/polym12081717
scaffold with minimal functional unit of skin. J Tissue Eng, 164. Agarwala S, 2016, A perspective on 3D bioprinting technology:
13:20417314211063022. Present and future. Am J Eng Appl Sci, 9(4):985–990.
https://doi.org/10.1177/20417314211063022 https://doi.org/10.3844/ajeassp.2016.985.990
153. Elemoso A, Shalunov G, Balakhovsky YM, et al., 2020, 3D 165. Daikuara LY, Chen X, Yue Z, et al., 2021, 3D bioprinting
Bioprinting: The roller coaster ride to commercialization. constructs to facilitate skin regeneration. Adv Funct Mater,
Int J Bioprint, 6(3):301. 32(3):2105080.
https://doi.org/10.18063/ijb.v6i3.301 https://doi.org/10.1002/adfm.202105080
Volume 9 Issue 5 (2023) 190 https://doi.org/10.18063/ijb.757

