Page 192 - IJB-9-5
P. 192

International Journal of Bioprinting                      Functional materials of 3D bioprinting for wound healing



            13.  Brock WD, Bearden W, Tann T,  et al., 2003, Autogenous   25.  Wan  W, Cai  F, Huang J, et al.,  2019, A  skin-inspired 3D
               dermis skin grafts in lower eyelid reconstruction. Ophthalmic   bilayer scaffold enhances granulation tissue formation and
               Plast Reconstr Surg, 19(5):394–397.                anti-infection for diabetic wound healing. J Mater Chem B,
                                                                  7(18):2954–2961.
               https://doi.org/10.1097/01.IOP.0000087070.83353.99
                                                                  https://doi.org/10.1039/c8tb03341b
            14.  Ali JM, Catarino P, Dunning J, et al., 2016, Could sentinel skin
               transplants have some utility in solid organ transplantation?   26.  Zhang B, Luo Y, Ma  L, et al., 2018,  3D bioprinting: An
               Transplant Proc, 48(8):2565–2570.                  emerging technology full of opportunities and challenges.
               https://doi.org/10.1016/j.transproceed.2016.06.040  Bio-Des Manuf, 1(1):2–13.
                                                                  https://doi.org/10.1007/s42242-018-0004-3
            15.  Shi C, Zhu Y, Su Y, et al., 2006, Stem cells and their applications
               in skin-cell therapy. Trends Biotechnol, 24(1):48–52.  27.  Chen  X, Han S,  Wu W,  et al., 2022,  Harnessing  4D
                                                                  printing bioscaffolds for advanced orthopedics.  Small,
               https://doi.org/10.1016/j.tibtech.2005.11.003
                                                                  18(36):e2106824.
            16.  Pajardi G, Rapisarda V, Somalvico F, et al., 2016, Skin
               substitutes based on allogenic fibroblasts or keratinocytes for   https://doi.org/10.1002/smll.202106824
               chronic wounds not responding to conventional therapy: A   28.  Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
               retrospective observational study. Int Wound J, 13(1):44–52.  3D  printing  of  anatomically accurate  and  mechanically
                                                                  heterogeneous aortic valve hydrogel scaffolds. Biofabrication,
               https://doi.org/10.1111/iwj.12223
                                                                  4(3):035005.
            17.  Rastin H, Ramezanpour M, Hassan K,  et  al., 2021, 3D
               bioprinting  of  a  cell-laden  antibacterial  polysaccharide   https://doi.org/10.1088/1758-5082/4/3/035005
               hydrogel composite. Carbohydr Polym, 264:117989.  29.  Zhong H, Huang J, Wu J,  et  al., 2021, Electrospinning
                                                                  nanofibers to 1D, 2D, and 3D scaffolds and their biomedical
               https://doi.org/10.1016/j.carbpol.2021.117989
                                                                  applications. Nano Res, 15(2):787–804.
            18.  Yi T, Huang S, Liu G, et al., 2018, Bioreactor synergy with   https://doi.org/10.1007/s12274-021-3593-7
               3D scaffolds: New era for stem cells culture. ACS Appl Bio
               Mater, 1(2):193–209.                            30.  Song W, Yao B, Zhu D, et al., 2022, 3D-bioprinted
                                                                  microenvironments for sweat gland regeneration.  Burns
               https://doi.org/10.1021/acsabm.8b00057
                                                                  Trauma, 10:tkab044.
            19.  Xue J, Wang X, Wang E, et al., 2019, Bioinspired multifunctional
               biomaterials with hierarchical microstructure for wound   https://doi.org/10.1093/burnst/tkab044
               dressing. Acta Biomater, 100:270–279.           31.  Liu C, Wang Z, Wei X, et al., 2021, 3D printed hydrogel/PCL
                                                                  core/shell fiber scaffolds with NIR-triggered drug release
               https://doi.org/10.1016/j.actbio.2019.10.012
                                                                  for cancer therapy and wound healing. Acta Biomater, 131:
            20.  Radmanesh S, Shabangiz S, Koupaei N, et al., 2022, 3D   314–325.
               printed bio  polymeric  materials as  a  new  perspective  for   https://doi.org/10.1016/j.actbio.2021.07.011
               wound dressing and skin tissue engineering applications: A
               review. J Polym Res, 29(2):50.                  32.  Zhao C, Chen R, Chen Z, et al., 2021, Bioinspired
                                                                  multifunctional cellulose nanofibril-based in situ liquid
               https://doi.org/10.1007/s10965-022-02899-6
                                                                  wound dressing for multiple synergistic therapy of the
            21.  Aderibigbe BA, Buyana B, 2018, Alginate in wound   postoperative infected wound.  ACS Appl Mater Interfaces,
               dressings. Pharmaceutics, 10(2):42.                13(43):51578–51591.
               https://doi.org/10.3390/pharmaceutics10020042      https://doi.org/10.1021/acsami.1c18221
            22.  Yu P, Zhong W, 2021, Hemostatic materials in wound care.   33.  Gul A, Gallus I, Tegginamath A, et al., 2021, Electrospun
               Burns Trauma, 9:tkab019.                           antibacterial  nanomaterials  for  wound  dressings
               https://doi.org/10.1093/burnst/tkab019             applications. Membranes (Basel), 11(12):908.
            23.  Pelletier DA, Suresh AK, Holton GA, et al., 2010, Effects of   https://doi.org/10.3390/membranes11120908
               engineered cerium oxide nanoparticles on bacterial growth   34.  Chouhan D, Dey N, Bhardwaj N, et al., 2019, Emerging
               and viability. Appl Environ Microbiol, 76(24):7981–7989.  and innovative approaches for wound healing and skin
               https://doi.org/10.1128/AEM.00650-10               regeneration: Current status and advances.  Biomaterials,
                                                                  216:119267.
            24.  Yang X, Liu W, Li N, et al., 2017, Design and development
               of polysaccharide hemostatic materials and their hemostatic   https://doi.org/10.1016/j.biomaterials.2019.119267
               mechanism. Biomater Sci, 5(12):2357–2368.       35.  Lansdown A, 2002, Calcium a potential central regulator
               https://doi.org/10.1039/c7bm00554g                 in wound healing in the skin. Wound Repair Regen, 10(5):
                                                                  271–285.


            Volume 9 Issue 5 (2023)                        184                         https://doi.org/10.18063/ijb.757
   187   188   189   190   191   192   193   194   195   196   197