Page 192 - IJB-9-5
P. 192
International Journal of Bioprinting Functional materials of 3D bioprinting for wound healing
13. Brock WD, Bearden W, Tann T, et al., 2003, Autogenous 25. Wan W, Cai F, Huang J, et al., 2019, A skin-inspired 3D
dermis skin grafts in lower eyelid reconstruction. Ophthalmic bilayer scaffold enhances granulation tissue formation and
Plast Reconstr Surg, 19(5):394–397. anti-infection for diabetic wound healing. J Mater Chem B,
7(18):2954–2961.
https://doi.org/10.1097/01.IOP.0000087070.83353.99
https://doi.org/10.1039/c8tb03341b
14. Ali JM, Catarino P, Dunning J, et al., 2016, Could sentinel skin
transplants have some utility in solid organ transplantation? 26. Zhang B, Luo Y, Ma L, et al., 2018, 3D bioprinting: An
Transplant Proc, 48(8):2565–2570. emerging technology full of opportunities and challenges.
https://doi.org/10.1016/j.transproceed.2016.06.040 Bio-Des Manuf, 1(1):2–13.
https://doi.org/10.1007/s42242-018-0004-3
15. Shi C, Zhu Y, Su Y, et al., 2006, Stem cells and their applications
in skin-cell therapy. Trends Biotechnol, 24(1):48–52. 27. Chen X, Han S, Wu W, et al., 2022, Harnessing 4D
printing bioscaffolds for advanced orthopedics. Small,
https://doi.org/10.1016/j.tibtech.2005.11.003
18(36):e2106824.
16. Pajardi G, Rapisarda V, Somalvico F, et al., 2016, Skin
substitutes based on allogenic fibroblasts or keratinocytes for https://doi.org/10.1002/smll.202106824
chronic wounds not responding to conventional therapy: A 28. Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
retrospective observational study. Int Wound J, 13(1):44–52. 3D printing of anatomically accurate and mechanically
heterogeneous aortic valve hydrogel scaffolds. Biofabrication,
https://doi.org/10.1111/iwj.12223
4(3):035005.
17. Rastin H, Ramezanpour M, Hassan K, et al., 2021, 3D
bioprinting of a cell-laden antibacterial polysaccharide https://doi.org/10.1088/1758-5082/4/3/035005
hydrogel composite. Carbohydr Polym, 264:117989. 29. Zhong H, Huang J, Wu J, et al., 2021, Electrospinning
nanofibers to 1D, 2D, and 3D scaffolds and their biomedical
https://doi.org/10.1016/j.carbpol.2021.117989
applications. Nano Res, 15(2):787–804.
18. Yi T, Huang S, Liu G, et al., 2018, Bioreactor synergy with https://doi.org/10.1007/s12274-021-3593-7
3D scaffolds: New era for stem cells culture. ACS Appl Bio
Mater, 1(2):193–209. 30. Song W, Yao B, Zhu D, et al., 2022, 3D-bioprinted
microenvironments for sweat gland regeneration. Burns
https://doi.org/10.1021/acsabm.8b00057
Trauma, 10:tkab044.
19. Xue J, Wang X, Wang E, et al., 2019, Bioinspired multifunctional
biomaterials with hierarchical microstructure for wound https://doi.org/10.1093/burnst/tkab044
dressing. Acta Biomater, 100:270–279. 31. Liu C, Wang Z, Wei X, et al., 2021, 3D printed hydrogel/PCL
core/shell fiber scaffolds with NIR-triggered drug release
https://doi.org/10.1016/j.actbio.2019.10.012
for cancer therapy and wound healing. Acta Biomater, 131:
20. Radmanesh S, Shabangiz S, Koupaei N, et al., 2022, 3D 314–325.
printed bio polymeric materials as a new perspective for https://doi.org/10.1016/j.actbio.2021.07.011
wound dressing and skin tissue engineering applications: A
review. J Polym Res, 29(2):50. 32. Zhao C, Chen R, Chen Z, et al., 2021, Bioinspired
multifunctional cellulose nanofibril-based in situ liquid
https://doi.org/10.1007/s10965-022-02899-6
wound dressing for multiple synergistic therapy of the
21. Aderibigbe BA, Buyana B, 2018, Alginate in wound postoperative infected wound. ACS Appl Mater Interfaces,
dressings. Pharmaceutics, 10(2):42. 13(43):51578–51591.
https://doi.org/10.3390/pharmaceutics10020042 https://doi.org/10.1021/acsami.1c18221
22. Yu P, Zhong W, 2021, Hemostatic materials in wound care. 33. Gul A, Gallus I, Tegginamath A, et al., 2021, Electrospun
Burns Trauma, 9:tkab019. antibacterial nanomaterials for wound dressings
https://doi.org/10.1093/burnst/tkab019 applications. Membranes (Basel), 11(12):908.
23. Pelletier DA, Suresh AK, Holton GA, et al., 2010, Effects of https://doi.org/10.3390/membranes11120908
engineered cerium oxide nanoparticles on bacterial growth 34. Chouhan D, Dey N, Bhardwaj N, et al., 2019, Emerging
and viability. Appl Environ Microbiol, 76(24):7981–7989. and innovative approaches for wound healing and skin
https://doi.org/10.1128/AEM.00650-10 regeneration: Current status and advances. Biomaterials,
216:119267.
24. Yang X, Liu W, Li N, et al., 2017, Design and development
of polysaccharide hemostatic materials and their hemostatic https://doi.org/10.1016/j.biomaterials.2019.119267
mechanism. Biomater Sci, 5(12):2357–2368. 35. Lansdown A, 2002, Calcium a potential central regulator
https://doi.org/10.1039/c7bm00554g in wound healing in the skin. Wound Repair Regen, 10(5):
271–285.
Volume 9 Issue 5 (2023) 184 https://doi.org/10.18063/ijb.757

