Page 281 - IJB-9-5
P. 281
International Journal of Bioprinting
26. Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D 38. Zhang J, Hu Q, Wang S, et al., 2020, Digital light processing
extrusion bioprinting. Nat Rev Methods Primers, 1(1): 75. based three-dimensional printing for medical applications.
Int J Bioprint, 6(1): 242.
http://doi.org/10.1038/s43586-021-00073-8
27. Liu H, Zhou H, Lan H, et al., 2018, Multinozzle multichannel http://doi.org/10.18063/ijb.v6i1.242
temperature deposition system for construction of a blood 39. Wu Y, Su H, Li M, et al., 2022, Digital light processing-based
vessel. SLAS Technol, 23(1): 64–9. multi-material bioprinting: Processes, applications, and
perspectives. J Biomed Mater Res A, 111(4): 527–42.
http://doi.org/10.1177/2472630317712221
28. Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting http://doi.org/10.1002/jbm.a.37473
of cell-laden vascular constructs using a gelatin-tyramine 40. Kadry H, Wadnap S, Xu C, et al., 2019, Digital light processing
bioink. Biomater Sci, 7(11): 4578–87. (DLP) 3D-printing technology and photoreactive polymers
in fabrication of modified-release tablets. Eur J Pharm Sci,
http://doi.org/10.1039/c8bm00618k
135: 60–7.
29. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017,
3D bioprinting for cartilage and osteochondral tissue http://doi.org/10.1016/j.ejps.2019.05.008
engineering. Adv Healthc Mater, 6(22): 1700298. 41. Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021,
http://doi.org/10.1002/adhm.201700298 Emerging technologies in multi-material bioprinting. Adv
Mater, 33(49): e2104730.
30. Li M, Sun D, Zhang J, et al., 2022, Application and
development of 3D bioprinting in cartilage tissue http://doi.org/10.1002/adma.202104730
engineering. Biomater Sci, 10(19):5430–58. 42. Godbey WT, Hindy SB, Sherman ME, et al., 2004, A novel
use of centrifugal force for cell seeding into porous scaffolds.
http://doi.org/10.1039/d2bm00709f
Biomaterials, 25(14): 2799–2805.
31. Ozbolat IT, Hospodiuk M, 2016, Current advances and
future perspectives in extrusion-based bioprinting. http://doi.org/10.1016/j.biomaterials.2003.09.056
Biomaterials, 76: 321–43. 43. Griffon DJ, Abulencia JP, Ragetly GR, et al., 2011, A
comparative study of seeding techniques and three-
http://doi.org/10.1016/j.biomaterials.2015.10.076
dimensional matrices for mesenchymal cell attachment. J
32. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D bioprinting: Tissue Eng Regen Med, 5(3): 169–179.
From benches to translational applications. Small, 15(23):
e1805510. http://doi.org/10.1002/term.302
44. Collon K, Bell JA, Chang SW, et al., 2022, Effects of cell
http://doi.org/10.1002/smll.201805510
seeding technique and cell density on BMP-2 production in
33. Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An transduced human mesenchymal stem cells. J Biomed Mater
introduction to 3D bioprinting: Possibilities, challenges and Res A, 110(12): 1944–1952.
future aspects. Materials (Basel), 11(11): 2199.
http://doi.org/10.1002/jbm.a.37430
http://doi.org/10.3390/ma11112199
45. Anderson DE, Athanasiou KA, 2009, A comparison of
34. Bohandy JB, Kim BF, Adrian FJ, 1986, Metal deposition primary and passaged chondrocytes for use in engineering
from a supported metal film using an excimer laser. J Appl the temporomandibular joint. Arch Oral Biol, 54(2): 138–145.
Phys, 60(4): 1538–9.
http://doi.org/10.1016/j.archoralbio.2008.09.018
http://doi.org/10.1063/1.337287
46. Anderson DE, Athanasiou KA, 2008, Passaged goat
35. Li J, Chen M, Fan X, et al., 2016, Recent advances in costal chondrocytes provide a feasible cell source for
bioprinting techniques: Approaches, applications and future temporomandibular joint tissue engineering. Ann Biomed
prospects. J Transl Med, 14: 271. Eng, 36(12): 1992–2001.
http://doi.org/10.1186/s12967-016-1028-0 http://doi.org/10.1007/s10439-008-9572-2
36. Catros S, Guillotin B, BacÁková M, et al., 2011, Effect of 47. Vapniarsky N, Huwe LW, Arzi B, et al., 2018, Tissue
laser energy, substrate film thickness and bioink viscosity engineering toward temporomandibular joint disc
on viability of endothelial cells printed by laser-assisted regeneration. Sci Transl Med, 10(446): eaaq1802.
bioprinting. Appl Surf Sci, 257(12): 5142–7.
http://doi.org/10.1126/scitranslmed.aaq1802
http://doi.org/10.1016/j.apsusc.2010.11.049
48. Kalpakci KN, Kim EJ, Athanasiou KA, 2011, Assessment
37. Su X, Wang T, Guo S, 2021, Applications of 3D printed bone of growth factor treatment on fibrochondrocyte and
tissue engineering scaffolds in the stem cell field. Regen Ther, chondrocyte co-cultures for TMJ fibrocartilage engineering.
16: 63–72. Acta Biomater, 7(4): 1710–1718.
http://doi.org/10.1016/j.reth.2021.01.007 http://doi.org/10.1016/j.actbio.2010.12.015
Volume 9 Issue 5 (2023) 273 https://doi.org/10.18063/ijb.761

