Page 281 - IJB-9-5
P. 281

International Journal of Bioprinting



            26.  Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D   38.  Zhang J, Hu Q, Wang S, et al., 2020, Digital light processing
               extrusion bioprinting. Nat Rev Methods Primers, 1(1): 75.  based three-dimensional printing for medical applications.
                                                                  Int J Bioprint, 6(1): 242.
               http://doi.org/10.1038/s43586-021-00073-8
            27.  Liu H, Zhou H, Lan H, et al., 2018, Multinozzle multichannel   http://doi.org/10.18063/ijb.v6i1.242
               temperature deposition system for construction of a blood   39.  Wu Y, Su H, Li M, et al., 2022, Digital light processing-based
               vessel. SLAS Technol, 23(1): 64–9.                 multi-material bioprinting: Processes, applications, and
                                                                  perspectives. J Biomed Mater Res A, 111(4): 527–42.
               http://doi.org/10.1177/2472630317712221
            28.  Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting   http://doi.org/10.1002/jbm.a.37473
               of cell-laden vascular constructs using a gelatin-tyramine   40.  Kadry H, Wadnap S, Xu C, et al., 2019, Digital light processing
               bioink. Biomater Sci, 7(11): 4578–87.              (DLP) 3D-printing technology and photoreactive polymers
                                                                  in fabrication of modified-release tablets. Eur J Pharm Sci,
               http://doi.org/10.1039/c8bm00618k
                                                                  135: 60–7.
            29.  Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017,
               3D bioprinting for cartilage and osteochondral tissue   http://doi.org/10.1016/j.ejps.2019.05.008
               engineering. Adv Healthc Mater, 6(22): 1700298.  41.  Ravanbakhsh H, Karamzadeh V, Bao G, et al., 2021,
               http://doi.org/10.1002/adhm.201700298              Emerging technologies in multi-material bioprinting.  Adv
                                                                  Mater, 33(49): e2104730.
            30.  Li M, Sun D, Zhang J,  et  al., 2022, Application and
               development of 3D bioprinting in cartilage tissue   http://doi.org/10.1002/adma.202104730
               engineering. Biomater Sci, 10(19):5430–58.      42.  Godbey WT, Hindy SB, Sherman ME, et al., 2004, A novel
                                                                  use of centrifugal force for cell seeding into porous scaffolds.
               http://doi.org/10.1039/d2bm00709f
                                                                  Biomaterials, 25(14): 2799–2805.
            31.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
               future  perspectives  in extrusion-based bioprinting.   http://doi.org/10.1016/j.biomaterials.2003.09.056
               Biomaterials, 76: 321–43.                       43.  Griffon DJ, Abulencia JP, Ragetly GR, et al., 2011, A
                                                                  comparative study  of  seeding  techniques  and  three-
               http://doi.org/10.1016/j.biomaterials.2015.10.076
                                                                  dimensional matrices for mesenchymal cell attachment.  J
            32.  Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D bioprinting:   Tissue Eng Regen Med, 5(3): 169–179.
               From benches to translational applications.  Small, 15(23):
               e1805510.                                          http://doi.org/10.1002/term.302
                                                               44.  Collon  K,  Bell  JA,  Chang  SW, et al.,  2022,  Effects  of  cell
               http://doi.org/10.1002/smll.201805510
                                                                  seeding technique and cell density on BMP-2 production in
            33.  Kačarević ŽP, Rider PM, Alkildani S, et al., 2018, An   transduced human mesenchymal stem cells. J Biomed Mater
               introduction to 3D bioprinting: Possibilities, challenges and   Res A, 110(12): 1944–1952.
               future aspects. Materials (Basel), 11(11): 2199.
                                                                  http://doi.org/10.1002/jbm.a.37430
               http://doi.org/10.3390/ma11112199
                                                               45.  Anderson DE, Athanasiou KA, 2009, A comparison of
            34.  Bohandy JB, Kim BF, Adrian FJ, 1986, Metal deposition   primary and passaged chondrocytes for use in engineering
               from a supported metal film using an excimer laser. J Appl   the temporomandibular joint. Arch Oral Biol, 54(2): 138–145.
               Phys, 60(4): 1538–9.
                                                                  http://doi.org/10.1016/j.archoralbio.2008.09.018
               http://doi.org/10.1063/1.337287
                                                               46.  Anderson DE, Athanasiou KA, 2008, Passaged goat
            35.  Li J, Chen M, Fan X, et al., 2016, Recent advances in   costal chondrocytes provide a feasible cell source for
               bioprinting techniques: Approaches, applications and future   temporomandibular  joint tissue  engineering.  Ann Biomed
               prospects. J Transl Med, 14: 271.                  Eng, 36(12): 1992–2001.
               http://doi.org/10.1186/s12967-016-1028-0           http://doi.org/10.1007/s10439-008-9572-2
            36.  Catros S, Guillotin B, BacÁková M, et al., 2011, Effect of   47.  Vapniarsky N, Huwe LW, Arzi B, et al., 2018, Tissue
               laser energy, substrate film thickness and bioink viscosity   engineering toward temporomandibular joint disc
               on viability of endothelial cells printed by laser-assisted   regeneration. Sci Transl Med, 10(446): eaaq1802.
               bioprinting. Appl Surf Sci, 257(12): 5142–7.
                                                                  http://doi.org/10.1126/scitranslmed.aaq1802
               http://doi.org/10.1016/j.apsusc.2010.11.049
                                                               48.  Kalpakci KN, Kim EJ, Athanasiou KA, 2011, Assessment
            37.  Su X, Wang T, Guo S, 2021, Applications of 3D printed bone   of growth factor treatment on fibrochondrocyte and
               tissue engineering scaffolds in the stem cell field. Regen Ther,   chondrocyte co-cultures for TMJ fibrocartilage engineering.
               16: 63–72.                                         Acta Biomater, 7(4): 1710–1718.
               http://doi.org/10.1016/j.reth.2021.01.007          http://doi.org/10.1016/j.actbio.2010.12.015


            Volume 9 Issue 5 (2023)                        273                         https://doi.org/10.18063/ijb.761
   276   277   278   279   280   281   282   283   284   285   286