Page 284 - IJB-9-5
P. 284
International Journal of Bioprinting 3D-printed scaffolds for TMJ fibrocartilage regeneration
joint cartilage regeneration. Biomed Phys Eng Express, 7(5): 100. Reina-Romo E, Mandal S, Amorim P, et al., 2021, Towards
055025. the experimentally-informed in silico nozzle design
optimization for extrusion-based bioprinting of shear-
http://doi.org/10.1088/2057-1976/ac1e68
thinning hydrogels. Front Bioeng Biotechnol, 9: 701778.
92. Donahue RP, Hu JC, Athanasiou KA, 2019, Remaining
hurdles for tissue-engineering the temporomandibular joint http://doi.org/10.3389/fbioe.2021.701778
disc. Trends Mol Med, 25(3): 241–256. 101. Caballero Aguilar LM, Silva SM, Moulton SE, 2019, Growth
http://doi.org/10.1016/j.molmed.2018.12.007 factor delivery: Defining the next generation platforms for
tissue engineering. J Control Release, 306: 40–58.
93. Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
challenges of translational 3D bioprinting. Nat Biomed Eng, http://doi.org/10.1016/j.jconrel.2019.05.028
4(4): 370–380. 102. Zhang M, Hu W, Cai C, et al., 2022, Advanced application
http://doi.org/10.1038/s41551-019-0471-7 of stimuli-responsive drug delivery system for inflammatory
arthritis treatment. Materials Today Bio, 14: 100223.
94. Chuong R, Piper MA, 1992, Cerebrospinal fluid leak
associated with proplast implant removal from the http://doi.org/10.1016/j.mtbio.2022.100223
temporomandibular joint. Oral Surg Oral Med Oral Pathol, 103. Azagarsamy MA, Anseth KS, 2013, Wavelength-controlled
74(4): 422–425. photocleavage for the orthogonal and sequential release
http://doi.org/10.1016/0030-4220(92)90286-y of multiple proteins. Angew Chem Int Ed Engl, 52(51):
13803–13807.
95. Bielajew BJ, Donahue RP, Espinosa MG, et al., 2021, Knee
orthopedics as a template for the temporomandibular joint. http://doi.org/10.1002/anie.201308174
Cell Rep Med, 2(5): 100241.
104. Chen P, Zheng L, Wang Y, et al., 2019, Desktop-
http://doi.org/10.1016/j.xcrm.2021.100241 stereolithography 3D printing of a radially oriented
96. She Y, Tang S, Zhu Z, et al., 2022, Comparison of extracellular matrix/mesenchymal stem cell exosome bioink
temporomandibular joint disc, meniscus, and intervertebral for osteochondral defect regeneration. Theranostics, 9(9):
disc in fundamental characteristics and tissue engineering. J 2439–2459.
Biomed Mater Res B Appl Biomater, 111(3): 717–729. http://doi.org/10.7150/thno.31017
http://doi.org/10.1002/jbm.b.35178 105. Ng CY, Chai JY, Foo JB, et al., 2021, Potential of exosomes
97. Malekpour A, Chen X, 2022, Printability and cell viability in as cell-free therapy in articular cartilage regeneration: A
extrusion-based bioprinting from experimental, computational, review. Int J Nanomed, 16: 6749–6781.
and machine learning views. J Funct Biomater, 13(2): 40. http://doi.org/10.2147/ijn.S327059
http://doi.org/10.3390/jfb13020040 106. Feng ZY, Zhang QY, Tan J, et al., 2022, Techniques for
98. Conev A, Litsa EE, Perez MR, et al., 2020, Machine learning- increasing the yield of stem cell-derived exosomes: What
guided three-dimensional printing of tissue engineering factors may be involved? Sci China Life Sci, 65(7): 1325–1341.
scaffolds. Tissue Eng Part A, 26(23–24): 1359–1368.
http://doi.org/10.1007/s11427-021-1997-2
http://doi.org/10.1089/ten.TEA.2020.0191
107. Yuan W, Wu Y, Huang M, et al., 2022, A new frontier
99. Ruberu K, Senadeera M, Rana S, et al., 2021, Coupling machine in temporomandibular joint osteoarthritis treatment:
learning with 3D bioprinting to fast track optimisation of Exosome-based therapeutic strategy. Front Bioeng
extrusion printing. Appl Mater Today, 22: 100914. Biotechnol, 10: 1074536.
http://doi.org/10.1016/j.apmt.2020.100914 http://doi.org/10.3389/fbioe.2022.1074536
Volume 9 Issue 5 (2023) 276 https://doi.org/10.18063/ijb.761

