Page 284 - IJB-9-5
P. 284

International Journal of Bioprinting                      3D-printed scaffolds for TMJ fibrocartilage regeneration



               joint cartilage regeneration. Biomed Phys Eng Express, 7(5):   100. Reina-Romo E, Mandal S, Amorim P, et al., 2021, Towards
               055025.                                            the experimentally-informed in silico nozzle design
                                                                  optimization for extrusion-based bioprinting of shear-
               http://doi.org/10.1088/2057-1976/ac1e68
                                                                  thinning hydrogels. Front Bioeng Biotechnol, 9: 701778.
            92.  Donahue RP, Hu JC, Athanasiou KA, 2019, Remaining
               hurdles for tissue-engineering the temporomandibular joint   http://doi.org/10.3389/fbioe.2021.701778
               disc. Trends Mol Med, 25(3): 241–256.           101. Caballero Aguilar LM, Silva SM, Moulton SE, 2019, Growth
               http://doi.org/10.1016/j.molmed.2018.12.007        factor delivery: Defining the next generation platforms for
                                                                  tissue engineering. J Control Release, 306: 40–58.
            93.  Murphy SV, De Coppi P, Atala A, 2020, Opportunities and
               challenges of translational 3D bioprinting. Nat Biomed Eng,   http://doi.org/10.1016/j.jconrel.2019.05.028
               4(4): 370–380.                                  102. Zhang M, Hu W, Cai C, et al., 2022, Advanced application
               http://doi.org/10.1038/s41551-019-0471-7           of stimuli-responsive drug delivery system for inflammatory
                                                                  arthritis treatment. Materials Today Bio, 14: 100223.
            94.  Chuong R, Piper MA, 1992, Cerebrospinal fluid leak
               associated  with  proplast  implant  removal  from  the   http://doi.org/10.1016/j.mtbio.2022.100223
               temporomandibular joint. Oral Surg Oral Med Oral Pathol,   103. Azagarsamy MA, Anseth KS, 2013, Wavelength-controlled
               74(4): 422–425.                                    photocleavage for the orthogonal and sequential release
               http://doi.org/10.1016/0030-4220(92)90286-y        of multiple proteins.  Angew Chem Int Ed Engl, 52(51):
                                                                  13803–13807.
            95.  Bielajew BJ, Donahue RP, Espinosa MG, et al., 2021, Knee
               orthopedics as a template for the temporomandibular joint.   http://doi.org/10.1002/anie.201308174
               Cell Rep Med, 2(5): 100241.
                                                               104. Chen P, Zheng L, Wang Y, et al., 2019, Desktop-
               http://doi.org/10.1016/j.xcrm.2021.100241          stereolithography 3D printing of a radially oriented
            96.  She  Y,  Tang S,  Zhu  Z, et al.,  2022,  Comparison  of   extracellular matrix/mesenchymal stem cell exosome bioink
               temporomandibular joint disc, meniscus, and intervertebral   for osteochondral defect regeneration.  Theranostics, 9(9):
               disc in fundamental characteristics and tissue engineering. J   2439–2459.
               Biomed Mater Res B Appl Biomater, 111(3): 717–729.  http://doi.org/10.7150/thno.31017
               http://doi.org/10.1002/jbm.b.35178              105. Ng CY, Chai JY, Foo JB, et al., 2021, Potential of exosomes
            97.  Malekpour A, Chen X, 2022, Printability and cell viability in   as cell-free therapy in articular cartilage regeneration: A
               extrusion-based bioprinting from experimental, computational,   review. Int J Nanomed, 16: 6749–6781.
               and machine learning views. J Funct Biomater, 13(2): 40.  http://doi.org/10.2147/ijn.S327059
               http://doi.org/10.3390/jfb13020040              106. Feng ZY, Zhang QY, Tan J, et al., 2022, Techniques for
            98.  Conev A, Litsa EE, Perez MR, et al., 2020, Machine learning-  increasing the yield of stem cell-derived exosomes: What
               guided three-dimensional printing of tissue engineering   factors may be involved? Sci China Life Sci, 65(7): 1325–1341.
               scaffolds. Tissue Eng Part A, 26(23–24): 1359–1368.
                                                                  http://doi.org/10.1007/s11427-021-1997-2
               http://doi.org/10.1089/ten.TEA.2020.0191
                                                               107. Yuan W, Wu Y, Huang M,  et al., 2022, A new frontier
            99.  Ruberu K, Senadeera M, Rana S, et al., 2021, Coupling machine   in temporomandibular joint osteoarthritis treatment:
               learning with 3D bioprinting to fast track optimisation of   Exosome-based therapeutic strategy.   Front  Bioeng
               extrusion printing. Appl Mater Today, 22: 100914.  Biotechnol, 10: 1074536.
               http://doi.org/10.1016/j.apmt.2020.100914          http://doi.org/10.3389/fbioe.2022.1074536



















            Volume 9 Issue 5 (2023)                        276                         https://doi.org/10.18063/ijb.761
   279   280   281   282   283   284   285   286   287   288   289