Page 283 - IJB-9-5
P. 283
International Journal of Bioprinting
70. Luo C, Xie R, Zhang J, et al., 2020, Low-temperature three- 81. Wang L, Lazebnik M, Detamore MS, 2009, Hyaline cartilage
dimensional printing of tissue cartilage engineered with gelatin cells outperform mandibular condylar cartilage cells in a
methacrylamide. Tissue Eng Part C Methods, 26(6): 306–316. TMJ fibrocartilage tissue engineering application. Osteoarthr
http://doi.org/10.1089/ten.TEC.2020.0053 Cartil, 17(3): 346–353.
71. Tarafder S, Koch A, Jun Y, et al., 2016, Micro-precise http://doi.org/10.1016/j.joca.2008.07.004
spatiotemporal delivery system embedded in 3D printing for 82. Stocum DL, Roberts WE, 2018, Part I: Development and
complex tissue regeneration. Biofabrication, 8(2): 025003. physiology of the temporomandibular joint. Curr Osteoporos
http://doi.org/10.1088/1758-5090/8/2/025003 Rep, 16(4): 360–368.
72. Dormer NH, Busaidy K, Berkland CJ, et al., 2011, http://doi.org/10.1007/s11914-018-0447-7
Osteochondral interface regeneration of rabbit mandibular 83. Singh M, Detamore MS, 2009, Biomechanical properties of
condyle with bioactive signal gradients. J Oral Maxillofac the mandibular condylar cartilage and their relevance to the
Surg, 69(6): e50–57. TMJ disc. J Biomech, 42(4): 405–417.
http://doi.org/10.1016/j.joms.2010.12.049 http://doi.org/10.1016/j.jbiomech.2008.12.012
73. Kalpakci KN, Willard VP, Wong ME, et al., 2011, An 84. Smith MH, Flanagan CL, Kemppainen JM, et al., 2007,
interspecies comparison of the temporomandibular joint Computed tomography-based tissue-engineered scaffolds in
disc. J Dent Res, 90(2): 193–198. craniomaxillofacial surgery. Int J Med Robot, 3(3): 207–216.
http://doi.org/10.1177/0022034510381501
http://doi.org/10.1002/rcs.143
74. Kuo J, Zhang L, Bacro T, et al., 2010, The region-
dependent biphasic viscoelastic properties of human 85. Abramowicz S, Crotts SJ, Hollister SJ, et al., 2021, Tissue-
temporomandibular joint discs under confined compression. engineered vascularized patient-specific temporomandibular
J Biomech, 43(7): 1316–1321. joint reconstruction in a Yucatan pig model. Oral Surg Oral
Med Oral Pathol Oral Radiol, 132(2): 145–152.
http://doi.org/10.1016/j.jbiomech.2010.01.020
http://doi.org/10.1016/j.oooo.2021.02.002
75. Legemate K, Tarafder S, Jun Y, et al., 2016, Engineering
human TMJ discs with protein-releasing 3D-printed 86. Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
scaffolds. J Dent Res, 95(7): 800–807. tissue engineering using polycaprolactone scaffolds
fabricated via selective laser sintering. Biomaterials, 26(23):
http://doi.org/10.1177/0022034516642404 4817–4827.
76. Lee CH, Rodeo SA, Fortier LA, et al., 2014, Protein-releasing http://doi.org/10.1016/j.biomaterials.2004.11.057
polymeric scaffolds induce fibrochondrocytic differentiation
of endogenous cells for knee meniscus regeneration in 87. Ciocca L, Donati D, Fantini M, et al., 2013, CAD-CAM-
sheep. Sci Transl Med, 6(266): 266ra171. generated hydroxyapatite scaffold to replace the mandibular
condyle in sheep: Preliminary results. J Biomater Appl, 28(2):
http://doi.org/10.1126/scitranslmed.3009696 207–218.
77. Moura C, Trindade D, Vieira M, et al., 2020, Multi-material
implants for temporomandibular joint disc repair: Tailored http://doi.org/10.1177/0885328212443296
additive manufacturing production. Front Bioeng Biotechnol, 88. Schek R, Taboas J, Hollister S, et al., 2005, Tissue engineering
8: 342. osteochondral implants for temporomandibular joint repair.
Orthod Craniofac Res, 8(4): 313–319.
http://doi.org/10.3389/fbioe.2020.00342
78. Ângelo DF, Wang Y, Morouço P, et al., 2021, A http://doi.org/https://doi.org/10.1111/j.1601-
randomized controlled preclinical trial on 3 interposal 6343.2005.00354.x
temporomandibular joint disc implants: TEMPOJIMS- 89. Wang F, Hu Y, He D, et al., 2017, Regeneration of
Phase 2. J Tissue Eng Regen Med, 15(10): 852–868. subcutaneous tissue-engineered mandibular condyle in
http://doi.org/10.1002/term.3230 nude mice. J Craniomaxillofac Surg, 45(6): 855–861.
79. Jiang N, Yang Y, Zhang L, et al., 2021, 3D-printed http://doi.org/10.1016/j.jcms.2017.03.017
polycaprolactone reinforced hydrogel as an artificial TMJ 90. Helgeland E, Rashad A, Campodoni E, et al., 2021, Dual-
disc. J Dent Res, 100(8): 839–846. crosslinked 3D printed gelatin scaffolds with potential for
http://doi.org/10.1177/00220345211000629 temporomandibular joint cartilage regeneration. Biomed
Mater, 16(3): 035026.
80. Yi P, Liang J, Huang F, et al., 2021, Composite system of
3D-printed polymer and acellular matrix hydrogel to repair http://doi.org/10.1088/1748-605X/abe6d9
temporomandibular joint disc. Front Mater, 8: 621416. 91. Helgeland E, Mohamed-Ahmed S, Shanbhag S, et al., 2021,
http://doi.org/10.3389/fmats.2021.621416 3D printed gelatin-genipin scaffolds for temporomandibular
Volume 9 Issue 5 (2023) 275 https://doi.org/10.18063/ijb.761

