Page 283 - IJB-9-5
P. 283

International Journal of Bioprinting



            70.  Luo C, Xie R, Zhang J, et al., 2020, Low-temperature three-  81.  Wang L, Lazebnik M, Detamore MS, 2009, Hyaline cartilage
               dimensional printing of tissue cartilage engineered with gelatin   cells outperform mandibular condylar cartilage cells in a
               methacrylamide. Tissue Eng Part C Methods, 26(6): 306–316.  TMJ fibrocartilage tissue engineering application. Osteoarthr
               http://doi.org/10.1089/ten.TEC.2020.0053           Cartil, 17(3): 346–353.
            71.  Tarafder S, Koch A, Jun Y, et  al., 2016, Micro-precise   http://doi.org/10.1016/j.joca.2008.07.004
               spatiotemporal delivery system embedded in 3D printing for   82.  Stocum DL, Roberts WE, 2018, Part I: Development and
               complex tissue regeneration. Biofabrication, 8(2): 025003.  physiology of the temporomandibular joint. Curr Osteoporos
               http://doi.org/10.1088/1758-5090/8/2/025003        Rep, 16(4): 360–368.
            72.  Dormer NH, Busaidy K, Berkland CJ, et al., 2011,   http://doi.org/10.1007/s11914-018-0447-7
               Osteochondral interface regeneration of rabbit mandibular   83.  Singh M, Detamore MS, 2009, Biomechanical properties of
               condyle with bioactive signal gradients.  J Oral Maxillofac   the mandibular condylar cartilage and their relevance to the
               Surg, 69(6): e50–57.                               TMJ disc. J Biomech, 42(4): 405–417.
               http://doi.org/10.1016/j.joms.2010.12.049          http://doi.org/10.1016/j.jbiomech.2008.12.012
            73.  Kalpakci KN, Willard VP, Wong ME,  et al., 2011, An   84.  Smith  MH,  Flanagan  CL,  Kemppainen  JM, et al.,  2007,
               interspecies  comparison  of  the  temporomandibular  joint   Computed tomography-based tissue-engineered scaffolds in
               disc. J Dent Res, 90(2): 193–198.                  craniomaxillofacial surgery. Int J Med Robot, 3(3): 207–216.
               http://doi.org/10.1177/0022034510381501
                                                                  http://doi.org/10.1002/rcs.143
            74.  Kuo J, Zhang L, Bacro T, et al., 2010, The region-
               dependent biphasic viscoelastic properties of human   85.  Abramowicz S, Crotts SJ, Hollister SJ, et al., 2021, Tissue-
               temporomandibular joint discs under confined compression.   engineered vascularized patient-specific temporomandibular
               J Biomech, 43(7): 1316–1321.                       joint reconstruction in a Yucatan pig model. Oral Surg Oral
                                                                  Med Oral Pathol Oral Radiol, 132(2): 145–152.
               http://doi.org/10.1016/j.jbiomech.2010.01.020
                                                                  http://doi.org/10.1016/j.oooo.2021.02.002
            75.  Legemate K, Tarafder S, Jun Y, et al., 2016, Engineering
               human TMJ discs with protein-releasing 3D-printed   86.  Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
               scaffolds. J Dent Res, 95(7): 800–807.             tissue engineering using polycaprolactone scaffolds
                                                                  fabricated via selective laser sintering. Biomaterials, 26(23):
               http://doi.org/10.1177/0022034516642404            4817–4827.
            76.  Lee CH, Rodeo SA, Fortier LA, et al., 2014, Protein-releasing   http://doi.org/10.1016/j.biomaterials.2004.11.057
               polymeric scaffolds induce fibrochondrocytic differentiation
               of  endogenous  cells  for  knee  meniscus  regeneration  in   87.  Ciocca L, Donati D, Fantini M, et al., 2013, CAD-CAM-
               sheep. Sci Transl Med, 6(266): 266ra171.           generated hydroxyapatite scaffold to replace the mandibular
                                                                  condyle in sheep: Preliminary results. J Biomater Appl, 28(2):
               http://doi.org/10.1126/scitranslmed.3009696        207–218.
            77.  Moura C, Trindade D, Vieira M, et al., 2020, Multi-material
               implants for temporomandibular joint disc repair: Tailored   http://doi.org/10.1177/0885328212443296
               additive manufacturing production. Front Bioeng Biotechnol,   88.  Schek R, Taboas J, Hollister S, et al., 2005, Tissue engineering
               8: 342.                                            osteochondral implants for temporomandibular joint repair.
                                                                  Orthod Craniofac Res, 8(4): 313–319.
               http://doi.org/10.3389/fbioe.2020.00342
            78.  Ângelo  DF,  Wang Y, Morouço  P, et al.,  2021,  A   http://doi.org/https://doi.org/10.1111/j.1601-
               randomized controlled preclinical trial on 3 interposal   6343.2005.00354.x
               temporomandibular  joint  disc  implants:  TEMPOJIMS-  89.  Wang F, Hu Y, He D, et al., 2017, Regeneration of
               Phase 2. J Tissue Eng Regen Med, 15(10): 852–868.  subcutaneous tissue-engineered mandibular condyle in
               http://doi.org/10.1002/term.3230                   nude mice. J Craniomaxillofac Surg, 45(6): 855–861.
            79.  Jiang N, Yang Y, Zhang L,  et  al., 2021, 3D-printed   http://doi.org/10.1016/j.jcms.2017.03.017
               polycaprolactone reinforced hydrogel as an artificial TMJ   90.  Helgeland E, Rashad A, Campodoni E, et al., 2021, Dual-
               disc. J Dent Res, 100(8): 839–846.                 crosslinked 3D printed gelatin scaffolds with potential for
               http://doi.org/10.1177/00220345211000629           temporomandibular joint cartilage regeneration.  Biomed
                                                                  Mater, 16(3): 035026.
            80.  Yi P, Liang J, Huang F, et al., 2021, Composite system of
               3D-printed polymer and acellular matrix hydrogel to repair   http://doi.org/10.1088/1748-605X/abe6d9
               temporomandibular joint disc. Front Mater, 8: 621416.  91.  Helgeland E, Mohamed-Ahmed S, Shanbhag S, et al., 2021,
               http://doi.org/10.3389/fmats.2021.621416           3D printed gelatin-genipin scaffolds for temporomandibular


            Volume 9 Issue 5 (2023)                        275                         https://doi.org/10.18063/ijb.761
   278   279   280   281   282   283   284   285   286   287   288