Page 282 - IJB-9-5
P. 282

International Journal of Bioprinting                      3D-printed scaffolds for TMJ fibrocartilage regeneration



            49.  Cui D, Li H, Xu X, et al., 2017, Mesenchymal stem cells for   59.  Talukdar S, Nguyen QT, Chen AC, et al., 2011, Effect of initial
               cartilage regeneration of TMJ osteoarthritis. Stem Cells Int,   cell seeding density on 3D-engineered silk fibroin scaffolds
               2017: 5979741.                                     for articular cartilage tissue engineering.  Biomaterials,
                                                                  32(34): 8927–8937.
               http://doi.org/10.1155/2017/5979741
                                                                  http://doi.org/10.1016/j.biomaterials.2011.08.027
            50.  Bousnaki M, Bakopoulou A, Papadogianni D, et al., 2018,
               Fibro/chondrogenic differentiation of dental stem cells into   60.  Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable
               chitosan/alginate scaffolds towards temporomandibular   gelatin and hyaluronic acid for stereolithographic 3D
               joint disc regeneration. J Mater Sci Mater Med, 29(7): 97.  bioprinting of tissue-engineered cartilage. J Biomed Mater
                                                                  Res B Appl Biomater, 107(8): 2649–2657.
               http://doi.org/10.1007/s10856-018-6109-6
                                                                  http://doi.org/10.1002/jbm.b.34354
            51.  Park YB, Ha CW, Lee CH, et al., 2017, Restoration of a
               large osteochondral defect of the knee using a composite of   61.  Li X, Teng Y, Liu J, et al., 2017, Chondrogenic differentiation
               umbilical cord blood-derived mesenchymal stem cells and   of BMSCs encapsulated in chondroinductive polysaccharide/
               hyaluronic acid hydrogel: A case report with a 5-year follow-  collagen hybrid hydrogels. J Mater Chem B, 5(26): 5109–5119.
               up. BMC Musculoskelet Disord, 18(1): 59.           http://doi.org/10.1039/c7tb01020f
               http://doi.org/10.1186/s12891-017-1422-7        62.  Kim M, Erickson IE, Huang AH, et al., 2018, Donor
            52.  Liu J, Nie H, Xu Z, et al., 2014, The effect of 3D nanofibrous   variation and optimization of human mesenchymal stem
               scaffolds on the chondrogenesis of induced pluripotent stem   cell chondrogenesis in hyaluronic acid. Tissue Eng Part A,
               cells and their application in restoration of cartilage defects.   24(21-22): 1693–1703.
               PLoS One, 9(11): e111566.                          http://doi.org/10.1089/ten.TEA.2017.0520
               http://doi.org/10.1371/journal.pone.0111566     63.  Wang D, Qi Y, Wang Z, et al., 2022, Recent advances in animal
            53.  Zhang J, Guo F, Mi J, et al., 2014, Periodontal ligament   models, diagnosis, and treatment of temporomandibular
               mesenchymal stromal cells increase proliferation and   joint osteoarthritis. Tissue Eng Part B Rev, 29(1): 62–77.
               glycosaminoglycans formation of temporomandibular joint   http://doi.org/10.1089/ten.TEB.2022.0065
               derived fibrochondrocytes. Biomed Res Int, 2014: 410167.
                                                               64.  Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink
               http://doi.org/10.1155/2014/410167                 for three-dimensional (3D) cell printing based cartilage tissue
                                                                  engineering. Mater Sci Eng C Mater Biol Appl, 83: 195–201.
            54.  Ogasawara N, Kano F, Hashimoto N, et al., 2020, Factors
               secreted  from  dental  pulp  stem  cells  show  multifaceted   http://doi.org/10.1016/j.msec.2017.09.002
               benefits for treating experimental temporomandibular joint   65.  Huber F, Vollmer D, Vinke J, et al., 2022, Influence of 3D
               osteoarthritis. Osteoarthr Cartil, 28(6): 831–841.  printing parameters on the mechanical stability of PCL
               http://doi.org/10.1016/j.joca.2020.03.010          scaffolds and the proliferation behavior of bone cells.
                                                                  Materials (Basel), 15(6): 2091.
            55.  Sun AX, Lin H, Fritch MR, et al., 2017, Chondrogenesis
               of human bone marrow mesenchymal stem cells in     http://doi.org/10.3390/ma15062091
               3-dimensional, photocrosslinked hydrogel constructs: Effect   66.  Lu J, Huang J, Jin J, et al., 2022, The design and characterization
               of cell seeding density and material stiffness. Acta Biomater,   of a strong bio-ink for meniscus regeneration. Int J Bioprint,
               58: 302–311.                                       8(4): 600.
               http://doi.org/10.1016/j.actbio.2017.06.016        http://doi.org/10.18063/ijb.v8i4.600
            56.  Sophia Fox AJ, Bedi A, Rodeo SA, 2009, The basic science   67.  Li P, Fu L, Liao Z, et al., 2021, Chitosan hydrogel/3D-
               of articular cartilage: Structure, composition, and function.   printed poly(ε-caprolactone) hybrid scaffold containing
               Sports Health, 1(6): 461–468.                      synovial mesenchymal stem cells for cartilage regeneration
               http://doi.org/10.1177/1941738109350438            based on tetrahedral framework nucleic acid recruitment.
                                                                  Biomaterials, 278: 121131.
            57.  Hunziker  EB,  Quinn  TM,  Häuselmann  HJ,  2002,
               Quantitative structural organization of normal adult human   http://doi.org/10.1016/j.biomaterials.2021.121131
               articular cartilage. Osteoarthr Cartil, 10(7): 564–572.  68.  Shen  H,  Hu  X,  2021,  Growth  factor  loading  on  aliphatic
               http://doi.org/10.1053/joca.2002.0814              polyester scaffolds. RSC Adv, 11(12): 6735–6747.
            58.  Ren X, Wang F, Chen C, et al., 2016, Engineering zonal   http://doi.org/10.1039/d0ra10232f
               cartilage through bioprinting collagen type II hydrogel   69.  Acri TM, Shin K, Seol D, et al., 2019, Tissue engineering
               constructs with biomimetic chondrocyte density gradient.   for the temporomandibular joint. Adv Healthc Mater, 8(2):
               BMC Musculoskelet Disord, 17: 301.                 e1801236.
               http://doi.org/10.1186/s12891-016-1130-8           http://doi.org/10.1002/adhm.201801236


            Volume 9 Issue 5 (2023)                        274                         https://doi.org/10.18063/ijb.761
   277   278   279   280   281   282   283   284   285   286   287