Page 282 - IJB-9-5
P. 282
International Journal of Bioprinting 3D-printed scaffolds for TMJ fibrocartilage regeneration
49. Cui D, Li H, Xu X, et al., 2017, Mesenchymal stem cells for 59. Talukdar S, Nguyen QT, Chen AC, et al., 2011, Effect of initial
cartilage regeneration of TMJ osteoarthritis. Stem Cells Int, cell seeding density on 3D-engineered silk fibroin scaffolds
2017: 5979741. for articular cartilage tissue engineering. Biomaterials,
32(34): 8927–8937.
http://doi.org/10.1155/2017/5979741
http://doi.org/10.1016/j.biomaterials.2011.08.027
50. Bousnaki M, Bakopoulou A, Papadogianni D, et al., 2018,
Fibro/chondrogenic differentiation of dental stem cells into 60. Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable
chitosan/alginate scaffolds towards temporomandibular gelatin and hyaluronic acid for stereolithographic 3D
joint disc regeneration. J Mater Sci Mater Med, 29(7): 97. bioprinting of tissue-engineered cartilage. J Biomed Mater
Res B Appl Biomater, 107(8): 2649–2657.
http://doi.org/10.1007/s10856-018-6109-6
http://doi.org/10.1002/jbm.b.34354
51. Park YB, Ha CW, Lee CH, et al., 2017, Restoration of a
large osteochondral defect of the knee using a composite of 61. Li X, Teng Y, Liu J, et al., 2017, Chondrogenic differentiation
umbilical cord blood-derived mesenchymal stem cells and of BMSCs encapsulated in chondroinductive polysaccharide/
hyaluronic acid hydrogel: A case report with a 5-year follow- collagen hybrid hydrogels. J Mater Chem B, 5(26): 5109–5119.
up. BMC Musculoskelet Disord, 18(1): 59. http://doi.org/10.1039/c7tb01020f
http://doi.org/10.1186/s12891-017-1422-7 62. Kim M, Erickson IE, Huang AH, et al., 2018, Donor
52. Liu J, Nie H, Xu Z, et al., 2014, The effect of 3D nanofibrous variation and optimization of human mesenchymal stem
scaffolds on the chondrogenesis of induced pluripotent stem cell chondrogenesis in hyaluronic acid. Tissue Eng Part A,
cells and their application in restoration of cartilage defects. 24(21-22): 1693–1703.
PLoS One, 9(11): e111566. http://doi.org/10.1089/ten.TEA.2017.0520
http://doi.org/10.1371/journal.pone.0111566 63. Wang D, Qi Y, Wang Z, et al., 2022, Recent advances in animal
53. Zhang J, Guo F, Mi J, et al., 2014, Periodontal ligament models, diagnosis, and treatment of temporomandibular
mesenchymal stromal cells increase proliferation and joint osteoarthritis. Tissue Eng Part B Rev, 29(1): 62–77.
glycosaminoglycans formation of temporomandibular joint http://doi.org/10.1089/ten.TEB.2022.0065
derived fibrochondrocytes. Biomed Res Int, 2014: 410167.
64. Yang X, Lu Z, Wu H, et al., 2018, Collagen-alginate as bioink
http://doi.org/10.1155/2014/410167 for three-dimensional (3D) cell printing based cartilage tissue
engineering. Mater Sci Eng C Mater Biol Appl, 83: 195–201.
54. Ogasawara N, Kano F, Hashimoto N, et al., 2020, Factors
secreted from dental pulp stem cells show multifaceted http://doi.org/10.1016/j.msec.2017.09.002
benefits for treating experimental temporomandibular joint 65. Huber F, Vollmer D, Vinke J, et al., 2022, Influence of 3D
osteoarthritis. Osteoarthr Cartil, 28(6): 831–841. printing parameters on the mechanical stability of PCL
http://doi.org/10.1016/j.joca.2020.03.010 scaffolds and the proliferation behavior of bone cells.
Materials (Basel), 15(6): 2091.
55. Sun AX, Lin H, Fritch MR, et al., 2017, Chondrogenesis
of human bone marrow mesenchymal stem cells in http://doi.org/10.3390/ma15062091
3-dimensional, photocrosslinked hydrogel constructs: Effect 66. Lu J, Huang J, Jin J, et al., 2022, The design and characterization
of cell seeding density and material stiffness. Acta Biomater, of a strong bio-ink for meniscus regeneration. Int J Bioprint,
58: 302–311. 8(4): 600.
http://doi.org/10.1016/j.actbio.2017.06.016 http://doi.org/10.18063/ijb.v8i4.600
56. Sophia Fox AJ, Bedi A, Rodeo SA, 2009, The basic science 67. Li P, Fu L, Liao Z, et al., 2021, Chitosan hydrogel/3D-
of articular cartilage: Structure, composition, and function. printed poly(ε-caprolactone) hybrid scaffold containing
Sports Health, 1(6): 461–468. synovial mesenchymal stem cells for cartilage regeneration
http://doi.org/10.1177/1941738109350438 based on tetrahedral framework nucleic acid recruitment.
Biomaterials, 278: 121131.
57. Hunziker EB, Quinn TM, Häuselmann HJ, 2002,
Quantitative structural organization of normal adult human http://doi.org/10.1016/j.biomaterials.2021.121131
articular cartilage. Osteoarthr Cartil, 10(7): 564–572. 68. Shen H, Hu X, 2021, Growth factor loading on aliphatic
http://doi.org/10.1053/joca.2002.0814 polyester scaffolds. RSC Adv, 11(12): 6735–6747.
58. Ren X, Wang F, Chen C, et al., 2016, Engineering zonal http://doi.org/10.1039/d0ra10232f
cartilage through bioprinting collagen type II hydrogel 69. Acri TM, Shin K, Seol D, et al., 2019, Tissue engineering
constructs with biomimetic chondrocyte density gradient. for the temporomandibular joint. Adv Healthc Mater, 8(2):
BMC Musculoskelet Disord, 17: 301. e1801236.
http://doi.org/10.1186/s12891-016-1130-8 http://doi.org/10.1002/adhm.201801236
Volume 9 Issue 5 (2023) 274 https://doi.org/10.18063/ijb.761

