Page 117 - IJB-9-6
P. 117

International Journal of Bioprinting                              Affordable temperature-controlled bioprinter



            24.  Liu F, Liu C, Chen Q,  et  al., 2018, Progress in organ 3D   34.  Gillispie GJ, Han A, Uzun-Per M, et al., 2020, The influence
               bioprinting. Int J Bioprint, 4(1):1–15.            of printing parameters and cell density on bioink printing
                                                                  outcomes. Tissue Eng Part A, 26(23–24):1349–1358.
               https//doi.org/10.18063/IJB.v4i1.128
                                                                  https//doi.org/10.1089/TEN.TEA.2020.0210
            25.  Liu W, Heinrich MA, Zhou Y,  et al., 2017, Extrusion
               bioprinting of shear-thinning gelatin methacryloyl bioinks.   35.  Tavares-Negrete JA, Aceves-Colin AE, Rivera-Flores DC, et
               Adv Healthc Mater, 6(12):1601451.                  al., 2021, Three-dimensional printing using a maize protein:
                                                                  Zein-based inks in biomedical applications. ACS Biomater
               https//doi.org/10.1002/adhm.201601451
                                                                  Sci Eng, 7(8):3964–3979.
            26.  Maciel BR, Baki K, Oelschlaeger C, et al., 2022, The influence   https//doi.org/10.1021/ACSBIOMATERIALS.1C00544/
               of rheological and wetting properties of hydrogel-based   SUPPL_FILE/AB1C00544_SI_004.MOV
               bio-inks on extrusion-based bioprinting.  Chem Ing Tech,
               94(3):393–401.                                  36.  Ioannidis K, Danalatos RI, Champeris Tsaniras S,  et al.,
                                                                  2020, A custom ultra-low-cost 3D bioprinter supports cell
               https//doi.org/10.1002/CITE.202100139              growth and differentiation. Front Bioeng Biotechnol, 8:1279.
            27.  Talluri DJS, Nguyen HT, Avazmohammadi R, et al., 2022,   https//doi.org/10.3389/FBIOE.2020.580889/BIBTEX
               Ink rheology regulates stability of bioprinted strands.  J
               Biomech Eng, 144(7):074503.                     37.  Bolívar-Monsalve EJ, Ceballos‐González CF, Chávez‐
                                                                  Madero  C,  et al.,  2022,  One-step  bioprinting  of  multi-
               https//doi.org/10.1115/1.4053404/1131087           channel hydrogel filaments using chaotic advection:
            28.  Yue K, Trujillo-de Santiago G, Alvarez MM,  et al., 2015,   Fabrication of pre-vascularized muscle-like tissues.  Adv
               Synthesis, properties, and biomedical applications of gelatin   Healthc Mater, 11(24):2200448.
               methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.  https//doi.org/10.1002/ADHM.202200448
               https//doi.org/10.1016/j.biomaterials.2015.08.045  38.  Kolesky DB, Truby RL, Gladman AS,  et al., 2014, 3D
            29.  Bolívar-Monsalve  EJ,  Ceballos-González  CF,  Borrayo-  bioprinting of vascularized, heterogeneous cell-laden tissue
               Montaño KI, et al., 2021, Continuous chaotic bioprinting of   constructs. Adv Mater, 26(19):3124–3130.
               skeletal muscle-like constructs. Bioprinting, 21:e00125.  https//doi.org/10.1002/ADMA.201305506
               https//doi.org/10.1016/J.BPRINT.2020.E00125     39.  Jalaal M, Cottrell G, Balmforth N,  et al., 2016, On the
            30.  Celikkin N, Mastrogiacomo S, Dou W, et al., 2022, In vitro   rheology of Pluronic F127 aqueous solutions. J Rheol (NY),
               and in vivo assessment of a 3D printable gelatin methacrylate   61(1):139.
               hydrogel for bone regeneration applications. J Biomed Mater   https//doi.org/10.1122/1.4971992
               Res Part B Appl Biomater, 110(9):2133–2145.
                                                               40.  Lenaerts V, Triqueneaux C, Quartern M,  et al., 1987,
               https//doi.org/10.1002/JBM.B.35067                 Temperature-dependent rheological behavior of Pluronic
            31.  Ying G, Jiang N, Yu C,  et al., 2018, Three-dimensional   F-127 aqueous solutions. Int J Pharm, 39(1–2):121–127.
               bioprinting of gelatin methacryloyl (GelMA).  Bio-Design   https//doi.org/10.1016/0378-5173(87)90206-7
               Manuf, 1(4):215–224.
                                                               41.  Xu C, Zhang M, Huang Y,  et al., 2014, Study of droplet
               https//doi.org/10.1007/s42242-018-0028-8           formation process during drop-on-demand inkjetting of
            32.  West J, Kuk G, 2016, The complementarity of openness: How   living cell-laden bioink. Langmuir, 30(30):9130–9138.
               MakerBot leveraged Thingiverse in 3D printing.  Technol   https//doi.org/10.1021/la501430x
               Forecast Soc Change, 102:169–181.
                                                               42.  Schwartz  R,  Malpica  M,  Thompson  GL,  et al.,  2020,  Cell
               https//doi.org/10.1016/J.TECHFORE.2015.07.025      encapsulation in gelatin bioink impairs 3D bioprinting
            33.  Magrisso S, Zoran A, 2019, Digital joinery for hybrid   resolution. J Mech Behav Biomed Mater, 103:103524.
               carpentry. Lect Notes Civ Eng, 24:441–461.         https//doi.org/10.1016/J.JMBBM.2019.103524
               https//doi.org/10.1007/978-3-030-03676-8_16













            Volume 9 Issue 6 (2023)                        109                        https://doi.org/10.36922/ijb.0244
   112   113   114   115   116   117   118   119   120   121   122