Page 116 - IJB-9-6
P. 116

International Journal of Bioprinting                              Affordable temperature-controlled bioprinter



            References                                         12.  De Maria C, Díaz Lantada A, Jämsä T, et al., 2022, Biomedical
                                                                  engineering in low- and middle-income settings: Analysis of
            1.   Atala A, Forgacs G, 2019, Three-dimensional bioprinting in   current state, challenges and best practices. Health Technol
               regenerative medicine: Reality, hype, and future. Stem Cells   (Berl), 12(3):643–653.
               Transl Med, 8(8):744–745.                          https//doi.org/10.1007/S12553-022-00657-8/FIGURES/7
               https//doi.org/10.1002/sctm.19-0089
                                                               13.  McElheny C, Hayes D, Devireddy R, 2017, Design and
            2.   Garciamendez-Mijares CE, Agrawal P, García Martínez G,   fabrication of a low-cost three-dimensional bioprinter.  J
               et al., 2021, State-of-art affordable bioprinters: A guide for   Med Devices Trans ASME, 11(4):1–9.
               the DiY community. Appl Phys Rev, 8(3):031312.
                                                                  https//doi.org/10.1115/1.4037259
               https//doi.org/10.1063/5.0047818
                                                               14.  Bisram RY, Bender LM, Niemi SR, et al., Toward Economical
            3.   Thakur PC, Cabrera DD, DeCarolis N,  et al., 2018,   3D Bioprinters for High School Science Laboratories.
               Innovation and commercialization strategies for three-
               dimensional-bioprinting technology: A lean business model   15.  Allevi, Allevi 1.
               perspective. J Commer Biotechnol, 24(1):78–87.     https://www.allevi3d.com/allevi-1/.
               https//doi.org/10.5912/jcb856                   16.  CellInk, Holograph X.
            4.   Zou Q, Grottkau BE, He Z, et al., 2020, Biofabrication of   https://www.cellink.com/bioprinting/holograph-x/
               valentine-shaped heart with a composite hydrogel and   17.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
               sacrificial material. Mater Sci Eng C, 108:110205.
                                                                  future  perspectives  in extrusion-based bioprinting.
               https//doi.org/10.1016/j.msec.2019.110205          Biomaterials, 76:321–343.
            5.   Osouli-Bostanabad K, Masalehdan T, Kapsa RM, et al., 2022,   https//doi.org/10.1016/j.biomaterials.2015.10.076
               Traction of 3D and 4D printing in the healthcare industry:   18.  Kahl M, Gertig M, Hoyer P, et al., 2019, Ultra-low-cost 3D
               From drug delivery and analysis to regenerative medicine.   bioprinting: Modification and application of an off-the-
               ACS Biomater Sci Eng, 8(7):2764–2797.              shelf desktop 3D-printer for biofabrication.  Front Bioeng
               https//doi.org/10.1021/ACSBIOMATERIALS.2C00094     Biotechnol, 7(July):1–12.
            6.   Choudhury D, Anand S, Naing MW, 2018, The arrival   https//doi.org/10.3389/fbioe.2019.00184
               of  commercial bioprinters—Towards  3D  bioprinting   19.  Yenilmez B, Temirel M, Knowlton S, et al., 2019, Development
               revolution! Int J Bioprinting, 4(2):139.           and characterization of a low-cost 3D bioprinter. Bioprinting,
               https//doi.org/10.18063/IJB.v4i2.139               13(March):e00044.
            7.   Ke D, Niu C, Yang X, 2022, Evolution of 3D bioprinting-  https//doi.org/10.1016/j.bprint.2019.e00044
               from the perspectives of bioprinting companies. Bioprinting,   20.  Krige A, Haluška J, Rova U,  et al., 2021, Design and
               25:e00193.                                         implementation  of a  low  cost  bio-printer modification,
               https//doi.org/10.1016/J.BPRINT.2022.E00193        allowing  for  switching  between  plastic  and  gel  extrusion.
                                                                  HardwareX, 9:e00186.
            8.   Xu K, Han Y, Huang Y, et al., 2022, The application of 3D
               bioprinting in urological diseases. Mater Today Bio, 16:100388.  https//doi.org/10.1016/J.OHX.2021.E00186
                                                               21.  Pérez Cortez JE, Sánchez VH, Vázquez-Lepe E, et al., 2022,
               https//doi.org/10.1016/J.MTBIO.2022.100388
                                                                  Retrofitting of an affordable 3D printer: Towards a material
            9.   Shinkar K, Rhode K, 2022, Could 3D extrusion bioprinting   efficient and low-cost bioprinting system.  Procedia CIRP,
               serve to be a real alternative to organ transplantation in the   110:150–155.
               future? Ann 3D Print Med, 7:100066.
                                                                  https//doi.org/10.1016/J.PROCIR.2022.06.028
               https//doi.org/10.1016/J.STLM.2022.100066
                                                               22.  Wagner M, Karner A, Gattringer P,  et al., 2021, A super
            10.  Panda S, Hajra S, Mistewicz K, et al., 2022, A focused review   low-cost bioprinter based on DVD-drive components and a
               on  three-dimensional  bioprinting  technology  for  artificial   raspberry pi as controller. Bioprinting, 23:e00142.
               organ fabrication. Biomater Sci, 10(18):5054–5080.
                                                                  https//doi.org/10.1016/J.BPRINT.2021.E00142
               https//doi.org/10.1039/D2BM00797E               23.  McCormack A, Highley CB, Leslie NR,  et al., 2020, 3D
            11.  Zhang  B, Luo  Y, Ma  L,  et al., 2018,  3D  bioprinting:  An   printing in suspension baths: Keeping the promises of
               emerging technology full of opportunities and challenges.   bioprinting afloat. Trends Biotechnol, 38(6):584–593.
               Bio-Design Manuf, 1(1):2–13.                       https//doi.org/10.1016/j.tibtech.2019.12.020
               https//doi.org/10.1007/S42242-018-0004-3


            Volume 9 Issue 6 (2023)                        108                        https://doi.org/10.36922/ijb.0244
   111   112   113   114   115   116   117   118   119   120   121