Page 178 - IJB-9-6
P. 178
International Journal of Bioprinting 3D printing in gastroenterology
97. Pien N, Palladino S, Copes F, et al., 2022, Tubular bioartificial 103. Thai MT, Phan PT, Tran HA, et al., 2023, Advanced soft
organs: From physiological requirements to fabrication robotic system for in situ 3D bioprinting and endoscopic
processes and resulting properties. A critical review. Cells surgery. Adv Sci, 10(12): e2205656.
Tissues Organs, 211(4): 420–446. http://doi.org/10.1002/advs.202205656
http://doi.org/10.1159/000519207 104. Wijnen N, Brouwers L, Jebbink EG, et al., 2021, Comparison
98. Yeleswarapu S, Chameettachal S, Pati F, 2021, Integrated 3D of segmentation software packages for in-hospital 3D print
printing-based framework-A strategy to fabricate tubular workflow. J Med Imaging, 8(3): 034004.
structures with mechanocompromised hydrogels. ACS Appl http://doi.org/10.1117/1.Jmi.8.3.034004
Biomater, 4(9): 6982–6992.
105. Yu C, Jiang J, 2020, A perspective on using machine learning
http://doi.org/10.1021/acsabm.1c00644 in 3D bioprinting. Int J Bioprint, 6(1): 253.
99. Han H, Park Y, Choi YM, et al., 2022, A bioprinted tubular http://doi.org/10.18063/ijb.v6i1.253
intestine model using a colon-specific extracellular matrix 106. Tian S, Stevens R, McInnes BT, et al., 2021, Machine assisted
bioink. Adv Healthc Mater, 11(2): e2101768. experimentation of extrusion-based bioprinting systems.
Micromachines, 12(7).
http://doi.org/10.1002/adhm.202101768
http://doi.org/10.3390/mi12070780
100. Nam H, Jeong HJ, Jo Y, et al., 2020, Multi-layered free-form
3D cell-printed tubular construct with decellularized inner 107. Shin J, Lee Y, Li Z, et al., 2022, Optimized 3D bioprinting
and outer esophageal tissue-derived bioinks. Sci Rep, 10(1): technology based on machine learning: A review of recent
7255. trends and advances. Micromachines, 13(3).
http://doi.org/10.1038/s41598-020-64049-6 http://doi.org/10.3390/mi13030363
108. Lee J, Oh SJ, An SH, et al., 2020, Machine learning-based design
101. Pi Q, Maharjan S, Yan X, et al., 2018, Digitally tunable strategy for 3D printable bioink: Elastic modulus and yield
microfluidic bioprinting of multilayered cannular tissues. stress determine printability. Biofabrication, 12(3): 035018.
Adv Mater, 30(43): e1706913.
http://doi.org/10.1088/1758-5090/ab8707
http://doi.org/10.1002/adma.201706913
109. Dhir V, Itoi T, Fockens P, et al., 2015, Novel ex vivo model
102. Zhao W, Xu T, 2020, Preliminary engineering for in situ in for hands-on teaching of and training in EUS-guided biliary
vivo bioprinting: A novel micro bioprinting platform for in drainage: creation of “Mumbai EUS” stereolithography/3D
situ in vivo bioprinting at a gastric wound site. Biofabrication, printing bile duct prototype (with videos). Gastrointest
12(4): 045020. Endosc, 81(2): 440–446.
http://doi.org/10.1088/1758-5090/aba4ff http://doi.org/10.1016/j.gie.2014.09.011
Volume 9 Issue 6 (2023) 170 https://doi.org/10.36922/ijb.0149

