Page 175 - IJB-9-6
P. 175

International Journal of Bioprinting                                       3D printing in gastroenterology




            36.  Etherton D, Tee L, Tillett C, et al., 2020, 3D visualization   46.  Xia J, Mao J, Chen H,  et al., 2023, Development and
               and 3D printing in abnormal gastrointestinal system   evaluation of a portable and soft 3D-printed cast for
               manifestations of situs ambiguus. Quant Imaging Med Surg,   laparoscopic choledochojejunostomy model in surgical
               10(9): 1877–1883.                                  training. BMC Med Edu, 23(1): 77.
               http://doi.org/10.21037/qims-20-661                http://doi.org/10.1186/s12909-023-04055-0
            37.  Luzon JA, Thorsen Y, Nogueira LP,  et  al., 2022,   47.  Chen Y, Qian C, Shen R, et al., 2020, 3D printing technology
               Reconstructing topography and extent of injury to the   improves medical interns’ understanding of anatomy of
               superior mesenteric artery plexus in right colectomy with   gastrocolic trunk. J Surg Edu, 77(5): 1279–1284.
               extended D3 mesenterectomy: A composite multimodal   http://doi.org/10.1016/j.jsurg.2020.02.031
               3-dimensional analysis. Surg Endosc, 36(10): 7607–7618.
                                                               48.  Boyajian MK, Lubner RJ, Roussel LO,  et al., 2020, A 3D
               http://doi.org/10.1007/s00464-022-09200-2
                                                                  printed suturing trainer for medical students.  Clin Teach,
            38.  Chedid VG, Kamath AA, Knudsen JM, et al., 2020, Three-  17(6): 650–654.
               dimensional-printed liver model helps learners identify
               hepatic subsegments: A randomized-controlled cross-over   http://doi.org/10.1111/tct.13176
               trial. Am J Gastroenterol, 115(11): 1906–1910.  49.  Guler E, Ozer MA, Bati AH, et al., 2021, Patient-centered
                                                                  oncosurgical planning with cancer models in subspecialty
               http://doi.org/10.14309/ajg.0000000000000958
                                                                  education. Surg Oncol, 37: 101537.
            39.  Tominaga T, Takagi K, Takeshita H, et al., 2016, Usefulness
               of three-dimensional printing models for patients with   http://doi.org/10.1016/j.suronc.2021.101537
               stoma construction. Case Rep Gastroenterol, 10(1): 57–62.  50.  Povey M, Powell S, Howes N,  et al., 2021, Evaluating the
                                                                  potential utility of three-dimensional printed models in
               http://doi.org/10.1159/000442663
                                                                  preoperative planning and patient consent in gastrointestinal
            40.  Papazarkadas X, Spartalis E, Patsouras D, et al., 2019, The   cancer surgery. Ann R Coll Surg Engl, 103(8): 615–620.
               role of 3D printing in colorectal surgery: Current evidence
               and future perspectives. In Vivo, 33(2): 297–302.  http://doi.org/10.1308/rcsann.2020.7102
                                                               51.  Witowski J, Budzyński A, Grochowska A,  et al., 2020,
               http://doi.org/10.21873/invivo.11475
                                                                  Decision-making based on 3D printed models in laparoscopic
            41.  Pietrabissa A, Marconi S, Peri A,  et al., 2016, From CT   liver resections with intraoperative ultrasound: A prospective
               scanning  to  3-D  printing  technology  for  the  preoperative   observational study. Eur Radiol, 30(3): 1306–1312.
               planning in laparoscopic splenectomy. Surg Endosc, 30(1):
               366–371.                                           http://doi.org/10.1007/s00330-019-06511-2
                                                               52.  Steinemann DC, Müller PC, Apitz M, et al., 2018, An ad hoc
               http://doi.org/10.1007/s00464-015-4185-y
                                                                  three dimensionally printed tool facilitates intraesophageal
            42.  Luzon JA,  Andersen BT,  Stimec  BV,  et al., 2019,   suturing in experimental surgery. J Surg Res, 223: 87–93.
               Implementation of 3D printed superior mesenteric vascular
               models for surgical planning and/or navigation in right   http://doi.org/10.1016/j.jss.2017.10.026
               colectomy with extended D3 mesenterectomy: comparison   53.  Yang YY, Zhao CQ, Wang LS, et al., 2019, A novel biopolymer
               of virtual and physical models to the anatomy found at   device fabricated by 3D printing for simplifying procedures
               surgery. Surg Endosc, 33(2): 567–575.              of pancreaticojejunostomy. Mater Sci Eng C, 103: 109786.
               http://doi.org/10.1007/s00464-018-6332-8           http://doi.org/10.1016/j.msec.2019.109786
            43.  Chen Y, Bian L, Zhou H, et al., 2020, Usefulness of three-  54.  Bernhard L, Krumpholz R, Krieger Y,  et al., 2022,
               dimensional printing of superior mesenteric vessels in right   PLAFOKON: A new concept for a patient-individual and
               hemicolon cancer surgery. Sci Rep, 10(1): 11660.   intervention-specific flexible surgical platform. Surg Endosc,
               http://doi.org/10.1038/s41598-020-68578-y          36(7): 5303–5312.
            44.  Hojo D, Murono K, Nozawa H, et al., 2022, Improvement   http://doi.org/10.1007/s00464-021-08908-x
               in surgical outcomes using 3-dimensional printed models   55.  Lin M, Firoozi N, Tsai CT, et al., 2019, 3D-printed flexible
               for lateral pelvic lymph node dissection in rectal cancer. Dis   polymer stents for potential applications in inoperable
               Colon Rectum, 65(4): 566–573.                      esophageal malignancies. Acta Biomater, 83: 119–129.
               http://doi.org/10.1097/dcr.0000000000002327        http://doi.org/10.1016/j.actbio.2018.10.035
            45.  Nishihara Y, Isobe Y, 2021, Preoperative skill evaluation   56.  Xu ZY, Ren HJ, Huang JJ,  et al., 2019, Application of a
               in transabdominal preperitoneal (TAPP) inguinal hernia   3D-printed “fistula stent” in plugging enteroatmospheric
               repair  using  a  three-dimensional  printed TAPP  repair   fistula  with  open  abdomen:  A  case  report.  World J
               simulator. Surg Endosc, 35(1): 270–274.            Gastroenterol, 25(14): 1775–1782.
               http://doi.org/10.1007/s00464-020-07389-8          http://doi.org/10.3748/wjg.v25.i14.1775


            Volume 9 Issue 6 (2023)                        167                        https://doi.org/10.36922/ijb.0149
   170   171   172   173   174   175   176   177   178   179   180