Page 175 - IJB-9-6
P. 175
International Journal of Bioprinting 3D printing in gastroenterology
36. Etherton D, Tee L, Tillett C, et al., 2020, 3D visualization 46. Xia J, Mao J, Chen H, et al., 2023, Development and
and 3D printing in abnormal gastrointestinal system evaluation of a portable and soft 3D-printed cast for
manifestations of situs ambiguus. Quant Imaging Med Surg, laparoscopic choledochojejunostomy model in surgical
10(9): 1877–1883. training. BMC Med Edu, 23(1): 77.
http://doi.org/10.21037/qims-20-661 http://doi.org/10.1186/s12909-023-04055-0
37. Luzon JA, Thorsen Y, Nogueira LP, et al., 2022, 47. Chen Y, Qian C, Shen R, et al., 2020, 3D printing technology
Reconstructing topography and extent of injury to the improves medical interns’ understanding of anatomy of
superior mesenteric artery plexus in right colectomy with gastrocolic trunk. J Surg Edu, 77(5): 1279–1284.
extended D3 mesenterectomy: A composite multimodal http://doi.org/10.1016/j.jsurg.2020.02.031
3-dimensional analysis. Surg Endosc, 36(10): 7607–7618.
48. Boyajian MK, Lubner RJ, Roussel LO, et al., 2020, A 3D
http://doi.org/10.1007/s00464-022-09200-2
printed suturing trainer for medical students. Clin Teach,
38. Chedid VG, Kamath AA, Knudsen JM, et al., 2020, Three- 17(6): 650–654.
dimensional-printed liver model helps learners identify
hepatic subsegments: A randomized-controlled cross-over http://doi.org/10.1111/tct.13176
trial. Am J Gastroenterol, 115(11): 1906–1910. 49. Guler E, Ozer MA, Bati AH, et al., 2021, Patient-centered
oncosurgical planning with cancer models in subspecialty
http://doi.org/10.14309/ajg.0000000000000958
education. Surg Oncol, 37: 101537.
39. Tominaga T, Takagi K, Takeshita H, et al., 2016, Usefulness
of three-dimensional printing models for patients with http://doi.org/10.1016/j.suronc.2021.101537
stoma construction. Case Rep Gastroenterol, 10(1): 57–62. 50. Povey M, Powell S, Howes N, et al., 2021, Evaluating the
potential utility of three-dimensional printed models in
http://doi.org/10.1159/000442663
preoperative planning and patient consent in gastrointestinal
40. Papazarkadas X, Spartalis E, Patsouras D, et al., 2019, The cancer surgery. Ann R Coll Surg Engl, 103(8): 615–620.
role of 3D printing in colorectal surgery: Current evidence
and future perspectives. In Vivo, 33(2): 297–302. http://doi.org/10.1308/rcsann.2020.7102
51. Witowski J, Budzyński A, Grochowska A, et al., 2020,
http://doi.org/10.21873/invivo.11475
Decision-making based on 3D printed models in laparoscopic
41. Pietrabissa A, Marconi S, Peri A, et al., 2016, From CT liver resections with intraoperative ultrasound: A prospective
scanning to 3-D printing technology for the preoperative observational study. Eur Radiol, 30(3): 1306–1312.
planning in laparoscopic splenectomy. Surg Endosc, 30(1):
366–371. http://doi.org/10.1007/s00330-019-06511-2
52. Steinemann DC, Müller PC, Apitz M, et al., 2018, An ad hoc
http://doi.org/10.1007/s00464-015-4185-y
three dimensionally printed tool facilitates intraesophageal
42. Luzon JA, Andersen BT, Stimec BV, et al., 2019, suturing in experimental surgery. J Surg Res, 223: 87–93.
Implementation of 3D printed superior mesenteric vascular
models for surgical planning and/or navigation in right http://doi.org/10.1016/j.jss.2017.10.026
colectomy with extended D3 mesenterectomy: comparison 53. Yang YY, Zhao CQ, Wang LS, et al., 2019, A novel biopolymer
of virtual and physical models to the anatomy found at device fabricated by 3D printing for simplifying procedures
surgery. Surg Endosc, 33(2): 567–575. of pancreaticojejunostomy. Mater Sci Eng C, 103: 109786.
http://doi.org/10.1007/s00464-018-6332-8 http://doi.org/10.1016/j.msec.2019.109786
43. Chen Y, Bian L, Zhou H, et al., 2020, Usefulness of three- 54. Bernhard L, Krumpholz R, Krieger Y, et al., 2022,
dimensional printing of superior mesenteric vessels in right PLAFOKON: A new concept for a patient-individual and
hemicolon cancer surgery. Sci Rep, 10(1): 11660. intervention-specific flexible surgical platform. Surg Endosc,
http://doi.org/10.1038/s41598-020-68578-y 36(7): 5303–5312.
44. Hojo D, Murono K, Nozawa H, et al., 2022, Improvement http://doi.org/10.1007/s00464-021-08908-x
in surgical outcomes using 3-dimensional printed models 55. Lin M, Firoozi N, Tsai CT, et al., 2019, 3D-printed flexible
for lateral pelvic lymph node dissection in rectal cancer. Dis polymer stents for potential applications in inoperable
Colon Rectum, 65(4): 566–573. esophageal malignancies. Acta Biomater, 83: 119–129.
http://doi.org/10.1097/dcr.0000000000002327 http://doi.org/10.1016/j.actbio.2018.10.035
45. Nishihara Y, Isobe Y, 2021, Preoperative skill evaluation 56. Xu ZY, Ren HJ, Huang JJ, et al., 2019, Application of a
in transabdominal preperitoneal (TAPP) inguinal hernia 3D-printed “fistula stent” in plugging enteroatmospheric
repair using a three-dimensional printed TAPP repair fistula with open abdomen: A case report. World J
simulator. Surg Endosc, 35(1): 270–274. Gastroenterol, 25(14): 1775–1782.
http://doi.org/10.1007/s00464-020-07389-8 http://doi.org/10.3748/wjg.v25.i14.1775
Volume 9 Issue 6 (2023) 167 https://doi.org/10.36922/ijb.0149

