Page 177 - IJB-9-6
P. 177
International Journal of Bioprinting 3D printing in gastroenterology
77. Kim IG, Wu Y, Park SA, et al., 2019, Tissue-engineered 87. Suntornnond R, Ng WL, Huang X, et al., 2022, Improving
esophagus via bioreactor cultivation for circumferential printability of hydrogel-based bio-inks for thermal inkjet
esophageal reconstruction. Tissue Eng Part A, 25(21–22): bioprinting applications via saponification and heat
1478–1492. treatment processes. J Mater Chem B, 10(31): 5989–6000.
http://doi.org/10.1089/ten.TEA.2018.0277 http://doi.org/10.1039/d2tb00442a
78. Park H, Kim IG, Wu Y, et al., 2021, Experimental 88. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
investigation of esophageal reconstruction with electrospun based bioprinting-process, materials, applications and
polyurethane nanofiber and 3D printing polycaprolactone regulatory challenges. Biofabrication, 12(2): 022001.
scaffolds using a rat model. Head Neck, 43(3): 833–848.
http://doi.org/10.1088/1758-5090/ab6034
http://doi.org/10.1002/hed.26540
89. Takeoka Y, Matsumoto K, Taniguchi D, et al., 2019,
79. Ha DH, Chae S, Lee JY, et al., 2021, Therapeutic effect of Regeneration of esophagus using a scaffold-free biomimetic
decellularized extracellular matrix-based hydrogel for structure created with bio-three-dimensional printing. PloS
radiation esophagitis by 3D printed esophageal stent. one, 14(3): e0211339.
Biomaterials, 266: 120477.
http://doi.org/10.1371/journal.pone.0211339
http://doi.org/10.1016/j.biomaterials.2020.120477
90. Madden LR, Nguyen TV, Garcia-Mojica S, et al., 2018,
80. Kim SD, Kim IG, Tran HN, et al., 2021, Three-dimensional Bioprinted 3D primary human intestinal tissues model
printed design of antibiotic-releasing esophageal patches for aspects of native physiology and ADME/Tox functions.
antimicrobial activity prevention. Tissue Eng Part A, 27(23– iScience, 2: 156–167.
24): 1490–1502.
http://doi.org/10.1016/j.isci.2018.03.015
http://doi.org/10.1089/ten.TEA.2020.0268
91. Maina RM, Barahona MJ, Geibel P, et al., 2021, Hydrogel-
81. Fouladian P, Kohlhagen J, Arafat M, et al., 2020, Three- based 3D bioprints repair rat small intestine injuries and
dimensional printed 5-fluorouracil eluting polyurethane integrate into native intestinal tissue. J Tissue Eng Regen
stents for the treatment of oesophageal cancers. Biomater Med, 15(2): 129–138.
Sci, 8(23): 6625–6636.
http://doi.org/10.1002/term.3157
http://doi.org/10.1039/d0bm01355b
92. Kim W, Kim G, 2018, Intestinal villi model with blood
82. Rudolph SE, Longo BN, Tse MW, et al., 2022, Crypt-Villus
scaffold architecture for bioengineering functional human capillaries fabricated using collagen-based bioink and dual-
intestinal epithelium. ACS Biomater Sci Eng, 8(11): 4942– cell-printing process. ACS Appl Mater Interfaces, 10(48):
4955. 41185–41196.
http://doi.org/10.1021/acsami.8b17410
http://doi.org/10.1021/acsbiomaterials.2c00851
83. Taebnia N, Zhang R, Kromann EB, et al., 2021, Dual-material 93. Kim W, Kim GH, 2020, An intestinal model with a finger-
3D-printed intestinal model devices with integrated Villi- like villus structure fabricated using a bioprinting process
like scaffolds. ACS Appl Mater Interfaces, 13(49): 58434– and collagen/SIS-based cell-laden bioink. Theranostics,
58446. 10(6): 2495–2508.
http://doi.org/10.1021/acsami.1c22185 http://doi.org/10.7150/thno.41225
84. Boys AJ, Barron SL, Tilev D, et al., 2020, Building scaffolds 94. Yan M, Lewis PL, Shah RN, 2018, Tailoring nanostructure
for tubular tissue engineering. Front Bioeng Biotechnol, 8: and bioactivity of 3D-printable hydrogels with self-assemble
589960. peptides amphiphile (PA) for promoting bile duct formation.
Biofabrication, 10(3): 035010.
http://doi.org/10.3389/fbioe.2020.589960
http://doi.org/10.1088/1758-5090/aac902
85. Tan YJ, Yeong WY, Tan X, et al., 2016, Characterization,
mechanical behavior and in vitro evaluation of a melt-drawn 95. Boyer CJ, Boktor M, Samant H, et al., 2019, 3D printing
scaffold for esophageal tissue engineering. J Mech Behav for bio-synthetic biliary stents. Bioengineering (Basel,
Biomed Mater, 57: 246–259. Switzerland), 6(1).
http://doi.org/10.1016/j.jmbbm.2015.12.015 http://doi.org/10.3390/bioengineering6010016
86. Lee SC, Gillispie G, Prim P, et al., 2020, Physical and 96. Yang H, Sun L, Pang Y, et al., 2021, Three-dimensional
chemical factors influencing the printability of hydrogel- bioprinted hepatorganoids prolong survival of mice with
based extrusion bioinks. Chem Rev, 120(19): 10834–10886. liver failure. Gut, 70(3): 567–574.
http://doi.org/10.1021/acs.chemrev.0c00015 http://doi.org/10.1136/gutjnl-2019-319960
Volume 9 Issue 6 (2023) 169 https://doi.org/10.36922/ijb.0149

