Page 177 - IJB-9-6
P. 177

International Journal of Bioprinting                                       3D printing in gastroenterology




            77.  Kim IG, Wu Y, Park SA,  et al., 2019, Tissue-engineered   87.  Suntornnond R, Ng WL, Huang X, et al., 2022, Improving
               esophagus via bioreactor cultivation for circumferential   printability of hydrogel-based bio-inks for thermal inkjet
               esophageal reconstruction.  Tissue Eng Part A, 25(21–22):   bioprinting applications via saponification and heat
               1478–1492.                                         treatment processes. J Mater Chem B, 10(31): 5989–6000.
               http://doi.org/10.1089/ten.TEA.2018.0277           http://doi.org/10.1039/d2tb00442a
            78.  Park H, Kim IG, Wu Y,  et al., 2021, Experimental   88.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
               investigation of esophageal reconstruction with electrospun   based bioprinting-process, materials, applications and
               polyurethane nanofiber and 3D printing polycaprolactone   regulatory challenges. Biofabrication, 12(2): 022001.
               scaffolds using a rat model. Head Neck, 43(3): 833–848.
                                                                  http://doi.org/10.1088/1758-5090/ab6034
               http://doi.org/10.1002/hed.26540
                                                               89.  Takeoka Y, Matsumoto K, Taniguchi D,  et al., 2019,
            79.  Ha DH, Chae S, Lee JY, et al., 2021, Therapeutic effect of   Regeneration of esophagus using a scaffold-free biomimetic
               decellularized extracellular matrix-based hydrogel for   structure created with bio-three-dimensional printing. PloS
               radiation esophagitis by 3D printed esophageal stent.   one, 14(3): e0211339.
               Biomaterials, 266: 120477.
                                                                  http://doi.org/10.1371/journal.pone.0211339
               http://doi.org/10.1016/j.biomaterials.2020.120477
                                                               90.  Madden LR, Nguyen TV, Garcia-Mojica S,  et  al., 2018,
            80.  Kim SD, Kim IG, Tran HN, et al., 2021, Three-dimensional   Bioprinted 3D  primary human  intestinal  tissues  model
               printed design of antibiotic-releasing esophageal patches for   aspects  of  native physiology  and ADME/Tox  functions.
               antimicrobial activity prevention. Tissue Eng Part A, 27(23–  iScience, 2: 156–167.
               24): 1490–1502.
                                                                  http://doi.org/10.1016/j.isci.2018.03.015
               http://doi.org/10.1089/ten.TEA.2020.0268
                                                               91.  Maina RM, Barahona MJ, Geibel P, et al., 2021, Hydrogel-
            81.  Fouladian P, Kohlhagen J, Arafat M,  et al., 2020, Three-  based 3D bioprints repair rat small intestine injuries and
               dimensional printed 5-fluorouracil eluting polyurethane   integrate into native intestinal tissue.  J Tissue  Eng Regen
               stents for the treatment of oesophageal cancers.  Biomater   Med, 15(2): 129–138.
               Sci, 8(23): 6625–6636.
                                                                  http://doi.org/10.1002/term.3157
               http://doi.org/10.1039/d0bm01355b
                                                               92.  Kim W, Kim G, 2018, Intestinal villi model with blood
            82.  Rudolph SE, Longo BN, Tse MW, et al., 2022, Crypt-Villus
               scaffold architecture for bioengineering functional human   capillaries fabricated using collagen-based bioink and dual-
               intestinal epithelium. ACS Biomater Sci Eng, 8(11): 4942–  cell-printing process.  ACS Appl Mater Interfaces, 10(48):
               4955.                                              41185–41196.
                                                                  http://doi.org/10.1021/acsami.8b17410
               http://doi.org/10.1021/acsbiomaterials.2c00851
            83.  Taebnia N, Zhang R, Kromann EB, et al., 2021, Dual-material   93.  Kim W, Kim GH, 2020, An intestinal model with a finger-
               3D-printed intestinal model devices with integrated Villi-  like villus structure fabricated using a bioprinting process
               like scaffolds.  ACS Appl Mater Interfaces, 13(49): 58434–  and  collagen/SIS-based  cell-laden  bioink.  Theranostics,
               58446.                                             10(6): 2495–2508.
               http://doi.org/10.1021/acsami.1c22185              http://doi.org/10.7150/thno.41225
            84.  Boys AJ, Barron SL, Tilev D, et al., 2020, Building scaffolds   94.  Yan M, Lewis PL, Shah RN, 2018, Tailoring nanostructure
               for tubular tissue engineering.  Front Bioeng Biotechnol, 8:   and bioactivity of 3D-printable hydrogels with self-assemble
               589960.                                            peptides amphiphile (PA) for promoting bile duct formation.
                                                                  Biofabrication, 10(3): 035010.
               http://doi.org/10.3389/fbioe.2020.589960
                                                                  http://doi.org/10.1088/1758-5090/aac902
            85.  Tan YJ, Yeong WY, Tan X,  et al., 2016, Characterization,
               mechanical behavior and in vitro evaluation of a melt-drawn   95.  Boyer  CJ,  Boktor  M,  Samant  H,  et al.,  2019,  3D  printing
               scaffold for esophageal tissue engineering.  J Mech Behav   for bio-synthetic biliary stents.  Bioengineering (Basel,
               Biomed Mater, 57: 246–259.                         Switzerland), 6(1).
               http://doi.org/10.1016/j.jmbbm.2015.12.015         http://doi.org/10.3390/bioengineering6010016
            86.  Lee SC, Gillispie G, Prim P,  et al., 2020, Physical and   96.  Yang  H, Sun  L,  Pang Y,  et al.,  2021, Three-dimensional
               chemical factors influencing the printability of hydrogel-  bioprinted hepatorganoids prolong survival of mice with
               based extrusion bioinks. Chem Rev, 120(19): 10834–10886.  liver failure. Gut, 70(3): 567–574.
               http://doi.org/10.1021/acs.chemrev.0c00015         http://doi.org/10.1136/gutjnl-2019-319960


            Volume 9 Issue 6 (2023)                        169                        https://doi.org/10.36922/ijb.0149
   172   173   174   175   176   177   178   179   180   181   182