Page 176 - IJB-9-6
P. 176
International Journal of Bioprinting 3D printing in gastroenterology
57. Durán Muñoz-Cruzado V, Calero Castro FJ, Padillo Eguía 67. Kwon CI, Shin Y, Hong J, et al., 2020, Production of ERCP
A, et al., 2020, Using a bio-scanner and 3D printing to create training model using a 3D printing technique (with video).
an innovative custom made approach for the management BMC Gastroenterol, 20(1): 145.
of complex entero-atmospheric fistulas. Sci Rep, 10(1):
19862. http://doi.org/10.1186/s12876-020-01295-y
68. Holt BA, Hearn G, Hawes R, et al., 2015, Development
http://doi.org/10.1038/s41598-020-74213-7
and evaluation of a 3D printed endoscopic ampullectomy
58. Kwon J, Choi J, Lee S, et al., 2020, Modelling and training model (with video). Gastrointest Endosc, 81(6):
manufacturing of 3D-printed, patient-specific, and 1470–1475.
anthropomorphic gastric phantoms: A pilot study. Sci Rep,
10(1): 18976. http://doi.org/10.1016/j.gie.2015.03.1916
http://doi.org/10.1038/s41598-020-74110-z 69. Zizer E, Roppenecker D, Helmes F, et al., 2016, A new
3D-printed overtube system for endoscopic submucosal
59. Sejor E, Debs T, Petrucciani N, et al., 2020, Feasibility and dissection: first results of a randomized study in a porcine
efficiency of sutureless end enterostomy by means of a model. Endoscopy, 48(8): 762–765.
3D-printed device in a porcine model. Surg Innov, 27(2):
203–210. http://doi.org/10.1055/s-0042-104345
http://doi.org/10.1177/1553350619895631 70. Ko WJ, Song GW, Hong SP, et al., 2016, Novel 3D-printing
technique for caps to enable tailored therapeutic endoscopy.
60. Culmone C, van Starkenburg R, Smit G, et al., 2022, Dig Endosc, 28(2): 131–138.
Comparison of two cable configurations in 3D printed
steerable instruments for minimally invasive surgery. http://doi.org/10.1111/den.12546
PloSone, 17(10): e0275535. 71. Walter BM, Hann A, Frank R, et al., 2017, A 3D-printed
http://doi.org/10.1371/journal.pone.0275535 cap with sideoptics for colonoscopy: A randomized ex vivo
study. Endoscopy, 49(8): 808–812.
61. Yang Y, Zhou Z, Liu R, et al., Application of 3D visualization
and 3D printing technology on ERCP for patients with hilar http://doi.org/10.1055/s-0043-105071
cholangiocarcinoma. Exp Ther Med, 15(4): 3259–3264. 72. Yzet C, Rivory J, Mochet M, et al., 2022, A 3D-printed
http://doi.org/10.3892/etm.2018.5831 innovative pedal fixator for connecting different pedal-
operated tools to improve work ergonomics during advanced
62. Ye L, Yang D, Huang Y, et al., 2020, 3D-printed model in the diagnostic and therapeutic endoscopic procedures.
guidance of tumor resection: A novel concept for resecting Endoscopy, 54(11): E650–E651.
a large submucosal tumor in the mid-esophagus. Endoscopy,
52(8): E273–E274. http://doi.org/10.1055/a-1732-7477
http://doi.org/10.1055/a-1090-6940 73. Maeda M, Kanai N, Kobayashi S, et al., 2015, Endoscopic
63. Oyama T, Yahagi N, Ponchon T, et al., 2015, How to establish cell sheet transplantation device developed by using a
endoscopic submucosal dissection in Western countries. 3-dimensional printer and its feasibility evaluation in a
World J Gastroenterol, 21(40): 11209-11220. porcine model. Gastrointest Endosc, 82(1): 147–152.
http://doi.org/10.3748/wjg.v21.i40.11209 http://doi.org/10.1016/j.gie.2015.01.062
64. Lee DS, Ahn JY, Lee GH, 2019, A newly designed 74. Diemer P, Markoew S, Le DQ, et al., 2015, Poly-ε-
3-dimensional printer-based gastric hemostasis simulator caprolactone mesh as a scaffold for in vivo tissue engineering
with two modules for endoscopic trainees (with Video). Gut in rabbit esophagus. Dis Esophagus, 28(3): 240–245.
Liver, 13(4): 415–420. http://doi.org/10.1111/dote.12172
http://doi.org/10.5009/gnl18389 75. Park SY, Choi JW, Park JK, et al., 2016, Tissue-engineered
65. Lee S, Ahn JY, Han M, et al., 2018, Efficacy of a three- artificial oesophagus patch using three-dimensionally
dimensional-printed training simulator for endoscopic printed polycaprolactone with mesenchymal stem cells: A
biopsy in the stomach. Gut Liver, 12(2): 149–157. preliminary report. Interact Cardiovasc Thorac Surg, 22(6):
712–717.
http://doi.org/10.5009/gnl17126
http://doi.org/10.1093/icvts/ivw048
66. Gallo C, Boškoski I, Matteo MV, et al., 2021, Training
in endoscopic retrograde cholangio-pancreatography: 76. Chung EJ, Ju HW, Yeon YK, et al., 2018, Development of
A critical assessment of the broad scenario of training an omentum-cultured oesophageal scaffold reinforced by
programs and models. Expert Rev Gastroenterol Hepatol, a 3D-printed ring: Feasibility of an in vivo bioreactor. Artif
15(6): 675–688. Cells Nanomed Biotechnol, 46(sup1): 885–895.
http://doi.org/10.1080/17474124.2021.1886078 http://doi.org/10.1080/21691401.2018.1439039
Volume 9 Issue 6 (2023) 168 https://doi.org/10.36922/ijb.0149

