Page 176 - IJB-9-6
P. 176

International Journal of Bioprinting                                       3D printing in gastroenterology




            57.  Durán Muñoz-Cruzado V, Calero Castro FJ, Padillo Eguía   67.  Kwon CI, Shin Y, Hong J, et al., 2020, Production of ERCP
               A, et al., 2020, Using a bio-scanner and 3D printing to create   training model using a 3D printing technique (with video).
               an innovative custom made approach for the management   BMC Gastroenterol, 20(1): 145.
               of complex entero-atmospheric fistulas.  Sci Rep, 10(1):
               19862.                                             http://doi.org/10.1186/s12876-020-01295-y
                                                               68.  Holt BA, Hearn G, Hawes R,  et al., 2015, Development
               http://doi.org/10.1038/s41598-020-74213-7
                                                                  and evaluation of a 3D printed endoscopic ampullectomy
            58.  Kwon J, Choi J, Lee S,  et al., 2020, Modelling and   training  model (with video).  Gastrointest Endosc, 81(6):
               manufacturing of 3D-printed, patient-specific, and   1470–1475.
               anthropomorphic gastric phantoms: A pilot study. Sci Rep,
               10(1): 18976.                                      http://doi.org/10.1016/j.gie.2015.03.1916
               http://doi.org/10.1038/s41598-020-74110-z       69.  Zizer E, Roppenecker D, Helmes F,  et al., 2016, A new
                                                                  3D-printed overtube system for endoscopic submucosal
            59.  Sejor E, Debs T, Petrucciani N, et al., 2020, Feasibility and   dissection: first results of a randomized study in a porcine
               efficiency of sutureless end enterostomy by means of a   model. Endoscopy, 48(8): 762–765.
               3D-printed  device  in  a  porcine  model.  Surg Innov,  27(2):
               203–210.                                           http://doi.org/10.1055/s-0042-104345
               http://doi.org/10.1177/1553350619895631         70.  Ko WJ, Song GW, Hong SP, et al., 2016, Novel 3D-printing
                                                                  technique for caps to enable tailored therapeutic endoscopy.
            60.  Culmone C, van Starkenburg R, Smit G,  et al., 2022,   Dig Endosc, 28(2): 131–138.
               Comparison of two cable configurations in 3D printed
               steerable instruments for minimally invasive surgery.   http://doi.org/10.1111/den.12546
               PloSone, 17(10): e0275535.                      71.  Walter BM, Hann A, Frank R,  et al., 2017, A 3D-printed
               http://doi.org/10.1371/journal.pone.0275535        cap with sideoptics for colonoscopy: A randomized ex vivo
                                                                  study. Endoscopy, 49(8): 808–812.
            61.  Yang Y, Zhou Z, Liu R, et al., Application of 3D visualization
               and 3D printing technology on ERCP for patients with hilar   http://doi.org/10.1055/s-0043-105071
               cholangiocarcinoma. Exp Ther Med, 15(4): 3259–3264.  72.  Yzet C, Rivory J, Mochet M,  et al., 2022, A 3D-printed
               http://doi.org/10.3892/etm.2018.5831               innovative pedal fixator for connecting different pedal-
                                                                  operated tools to improve work ergonomics during advanced
            62.  Ye L, Yang D, Huang Y, et al., 2020, 3D-printed model in the   diagnostic and  therapeutic  endoscopic  procedures.
               guidance of tumor resection: A novel concept for resecting   Endoscopy, 54(11): E650–E651.
               a large submucosal tumor in the mid-esophagus. Endoscopy,
               52(8): E273–E274.                                  http://doi.org/10.1055/a-1732-7477
               http://doi.org/10.1055/a-1090-6940              73.  Maeda M, Kanai N, Kobayashi S, et al., 2015, Endoscopic
            63.  Oyama T, Yahagi N, Ponchon T, et al., 2015, How to establish   cell sheet transplantation device developed by using a
               endoscopic submucosal dissection in Western countries.   3-dimensional  printer  and  its  feasibility  evaluation  in  a
               World J Gastroenterol, 21(40): 11209-11220.        porcine model. Gastrointest Endosc, 82(1): 147–152.
               http://doi.org/10.3748/wjg.v21.i40.11209           http://doi.org/10.1016/j.gie.2015.01.062
            64.  Lee DS, Ahn JY, Lee GH, 2019, A newly designed   74.  Diemer P, Markoew S, Le DQ,  et al., 2015, Poly-ε-
               3-dimensional printer-based gastric hemostasis simulator   caprolactone mesh as a scaffold for in vivo tissue engineering
               with two modules for endoscopic trainees (with Video). Gut   in rabbit esophagus. Dis Esophagus, 28(3): 240–245.
               Liver, 13(4): 415–420.                             http://doi.org/10.1111/dote.12172
               http://doi.org/10.5009/gnl18389                 75.  Park SY, Choi JW, Park JK, et al., 2016, Tissue-engineered
            65.  Lee S, Ahn JY, Han M,  et al., 2018, Efficacy of a three-  artificial oesophagus patch using three-dimensionally
               dimensional-printed training simulator for endoscopic   printed polycaprolactone with mesenchymal stem cells: A
               biopsy in the stomach. Gut Liver, 12(2): 149–157.  preliminary report. Interact Cardiovasc Thorac Surg, 22(6):
                                                                  712–717.
               http://doi.org/10.5009/gnl17126
                                                                  http://doi.org/10.1093/icvts/ivw048
            66.  Gallo C, Boškoski I, Matteo MV,  et al., 2021, Training
               in endoscopic retrograde cholangio-pancreatography:   76.  Chung EJ, Ju HW, Yeon YK, et al., 2018, Development of
               A critical assessment of the broad scenario of training   an omentum-cultured oesophageal scaffold reinforced by
               programs and models.  Expert Rev Gastroenterol Hepatol,   a 3D-printed ring: Feasibility of an in vivo bioreactor. Artif
               15(6): 675–688.                                    Cells Nanomed Biotechnol, 46(sup1): 885–895.
               http://doi.org/10.1080/17474124.2021.1886078       http://doi.org/10.1080/21691401.2018.1439039


            Volume 9 Issue 6 (2023)                        168                        https://doi.org/10.36922/ijb.0149
   171   172   173   174   175   176   177   178   179   180   181