Page 558 - IJB-9-6
P. 558

International Journal of Bioprinting                            3D printing of PCL-ceramic composite scaffolds


               Appl Surf Sci, 258: 7589–7595.                  43.  Parupelli SK, Aljohani A, Desai S, 2019, Direct jet printing
                                                                  and characterization of calcium alginate microcapsules for
               https://doi.org/10.1016/j.apsusc.2012.04.094
                                                                  biomedical applications. In: Proceedings of the 2019 IISE
            33.  Liu L, Wang Y, Guo S, et al., 2012, Porous polycaprolactone/  Annual Conference. Florida, USA: Institute of Industrial
               nanohydroxyapatite tissue engineering scaffolds fabricated   and Systems Engineers (IISE).
               by combining NaCl and PEG as co-porogens: Structure,
               property, and chondrocyte-scaffold interaction  in vitro.   44.  Perkins J, Xu Z, Smith C,  et al., 2015, Direct writing of
               J Biomed Mater Res B Appl Biomater, 100: 956–966.   polymeric coatings on magnesium alloy for tracheal stent
                                                                  applications. Ann Biomed Eng, 43: 1158–1165.
               https://doi.org/10.1002/JBM.B.32658
                                                                  https://doi.org/10.1007/s10439-014-1169-3
            34.  Diba M, Kharaziha M, Fathi MH, et al., 2012, Preparation
               and   characterization  of  polycaprolactone/forsterite  45.  Papaioannou TG, Manolesou D, Dimakakos E, et al., 2019,
               nanocomposite porous scaffolds designed for bone tissue   3D bioprinting methods and techniques: Applications on
               regeneration. Compos Sci Technol, 72: 716–723.     artificial blood vessel fabrication. Acta Cardiol Sin, 35: 284.
                                                                  https://doi.org/10.6515/ACS.201905_35(3).20181115A
               https://doi.org/10.1016/J.COMPSCITECH.2012.01.023
                                                               46.  Ning L, Chen X, 2017, A brief review of extrusion-based
            35.  Lei  B, Shin  KH,  Noh  DY,  et al.,  2012, Bioactive  glass
               microspheres as reinforcement for improving the    tissue scaffold bio-printing. Biotechnol J, 12: 1600671.
               mechanical properties and biological performance of      https://doi.org/10.1002/BIOT.201600671
               poly(ε-caprolactone) polymer for bone tissue regeneration.   47.  Deo KA, Singh KA, Peak CW,  et al., 2020, Bioprinting
               J Biomed Mater Res B Appl Biomater, 100B: 967–975.
                                                                  101: Design, fabrication, and evaluation of cell-laden 3D
               https://doi.org/10.1002/JBM.B.32659                bioprinted scaffolds. Tissue Eng Part A, 26: 318–338.
            36.  Dong Z, Wu Y, Wang Q,  et  al., 2012, Reinforcement of      https://doi.org/10.1089/TEN.TEA.2019.0298
               electrospun  membranes  using  nanoscale  Al2O3  whiskers   48.  Kačarević ŽP, Rider PM, Alkildani S,  et al., 2018, An
               for  improved  tissue  scaffolds.  J  Biomed Mater Res A,   introduction to 3D bioprinting: Possibilities, challenges and
               100: 903–910.
                                                                  future aspects. Materials, 11: 2199.
               https://doi.org/10.1002/jbm.a.34027
                                                                  https://doi.org/10.3390/MA11112199
            37.  Marquetti I, Desai S, 2019, Orientation effects on the nanoscale   49.  Agarwal  S,  Saha  S,  Balla  VK,  et al.,  2020,  Current
               adsorption behavior of bone  morphogenetic protein-2 on   developments in 3D bioprinting for tissue and organ
               hydrophilic silicon dioxide. RSC Adv, 9: 906–916.
                                                                  regeneration-a review. Front Mech Eng, 6: 589171.
               https://doi.org/10.1039/C8RA09165J
                                                                  https://doi.org/10.3389/FMECH.2020.589171
            38.  Marquetti I, Desai S, 2018, Molecular modeling the adsorption   50.  Gmeiner R, Deisinger U, Schönherr J, et al., 2015, Additive
               behavior of bone morphogenetic protein-2 on hydrophobic   manufacturing of bioactive glasses and silicate bioceramics.
               and hydrophilic substrates. Chem Phys Lett, 706: 285–294.
                                                                  J Ceram Sci, 6: 75–86.
               https://doi.org/10.1016/j.cplett.2018.06.015
                                                                  https://doi.org/10.4416/JCST2015-00001
            39.  Marquetti I, Desai S, 2022, An atomistic investigation of   51.  Sobral JM, Caridade SG, Sousa RA,  et al., 2011, Three-
               adsorption of bone morphogenetic protein-2 on gold with   dimensional plotted scaffolds with controlled pore size
               nanoscale topographies. Surfaces, 5: 176–185.
                                                                  gradients: Effect of scaffold geometry on mechanical
               https://doi.org/10.3390/surfaces5010010            performance  and  cell  seeding  efficiency.  Acta Biomater,
                                                                  7: 1009–1018.
            40.  Huang B, Caetano G, Vyas C, et al., 2018, Polymer-ceramic
               composite scaffolds: The effect of hydroxyapatite and β-tri-     https://doi.org/10.1016/j.actbio.2010.11.003
               calcium phosphate. Materials, 11: 129.
                                                               52.  Chen WH, Liu YY, Zhang FH, et al., 2015, Osteochondral
               https://doi.org/10.3390/ma11010129                 integrated scaffolds with gradient structure by 3D printing
                                                                  forming. Int J Autom Comput, 12: 220–228.
            41.  Klein CP, Driessen AA, de Groot K,  et al., 1983,
               Biodegradation behavior of various calcium phosphate      https://doi.org/10.1007/s11633-014-0853-y
               materials in bone tissue. J Biomed Mater Res, 17: 769–784.
                                                               53.  Thomas M, Willerth SM, 2017, 3-D bioprinting of neural
               https://doi.org/10.1002/jbm.820170505              tissue for applications in cell therapy and drug screening.
                                                                  Front Bioeng Biotechnol, 5: 69.
            42.  Parupelli S, Desai S, 2019, A comprehensive review of additive
               manufacturing (3d printing): Processes, applications and      https://doi.org/10.3389/fbioe.2017.00069
               future potential. Am J Appl Sci, 16: 244–272.
                                                               54.  Kundu J, Shim JH, Jang J,  et al., 2015, An additive
               https://doi.org/10.3844/ajassp.2019.244.272        manufacturing‐based PCL-alginate-chondrocyte bioprinted


            Volume 9 Issue 6 (2023)                        550                         https://doi.org/10.36922/ijb.0196
   553   554   555   556   557   558   559   560   561   562   563