Page 559 - IJB-9-6
P. 559

International Journal of Bioprinting                            3D printing of PCL-ceramic composite scaffolds


               scaffold for cartilage tissue engineering. J Tissue Eng Regen   65.  Park SA, Lee HJ, Kim KS, et al., 2018, In vivo evaluation
               Med, 9: 1286–1297.                                 of 3D-printed polycaprolactone scaffold implantation
                                                                  combined with  β-TCP powder for alveolar bone
               https://doi.org/10.1002/term.1682
                                                                  augmentation in a beagle defect model. Materials, 11: 238.
            55.  Ma J, Lin L, Zuo Y, et al., 2019, Modification of 3D printed
               PCL scaffolds by PVAc and HA to enhance cytocompatibility      https://doi.org/10.3390/ma11020238
               and osteogenesis. RSC Adv, 9: 5338–5346.        66.  Murphy CM, Haugh MG, O’brien FJ, 2010, The effect
                                                                  of mean pore size on cell attachment, proliferation and
               https://doi.org/10.1039/C8RA06652C
                                                                  migration in collagen-glycosaminoglycan scaffolds for bone
            56.  Adhikari U, Rijal NP, Khanal S, et al., 2016, Magnesium and   tissue engineering. Biomaterials, 31: 461–466.
               calcium-containing scaffolds for bone tissue regeneration.
               In: ASME International Mechanical Engineering Congress      https://doi.org/10.1016/j.biomaterials.2009.09.063
               and Exposition. Vol.  50688. New  York, United States:   67.  O’Brien FJ, Harley BA, Yannas IV,  et  al., 2005, The effect
               American Society of Mechanical Engineers.          of  pore  size on  cell  adhesion  in  collagen-GAG scaffolds.
                                                                  Biomaterials, 26: 433–441.
               https://doi.org/10.1115/IMECE2016-66835
                                                                  https://doi.org/10.1016/j.biomaterials.2004.02.052
            57.  Schneider  CA,  Rasband  WS,  Eliceiri  KW,  2012,  NIH
               Image to ImageJ: 25 years of image analysis. Nat Methods,   68.  Wibowo A, Vyas C, Cooper G, et al., 2020, 3D printing of
               9: 671–675.                                        polycaprolactone-polyaniline electroactive scaffolds for
                                                                  bone tissue engineering. Materials, 13: 512.
               https://doi.org/10.1038/nmeth.2089
                                                                  https://doi.org/10.3390/ma13030512
            58.  Huang B, Bártolo PJ, 2018, Rheological characterization of
               polymer/ceramic blends for 3D printing of bone scaffolds.   69.  Loh QL, Choong C, 2013, Three-dimensional scaffolds for
               Polym Test, 68: 365–378.                           tissue engineering applications: Role of porosity and pore
                                                                  size. Tissue Eng Part B Rev, 19: 485–502.
               https://doi.org/10.1016/j.polymertesting.2018.04.033
            59.  Jiang W, Shi J, Li W, et al., 2012, Morphology, wettability, and      https://doi.org/10.1089/ten.TEB.2012.0437
               mechanical properties of polycaprolactone/hydroxyapatite   70.  Karageorgiou V, Kaplan D, 2005, Porosity of 3D biomaterial
               composite scaffolds with interconnected pore structures   scaffolds and osteogenesis. Biomaterials, 26: 5474–5491.
               fabricated by a mini‐deposition  system.  Polym Eng Sci,
               52: 2396–2402.                                     https://doi.org/10.1016/j.biomaterials.2005.02.002
                                                               71.  Edwards A, Jarvis D, Hopkins T,  et al., 2015, Poly
               https://doi.org/10.1002/pen.23193
                                                                  (ε-caprolactone)/keratin-based  composite  nanofibers
            60.  Jia J, Zhou H, Wei J, et al., 2010, Development of magnesium   for biomedical applications.  J  Biomed  Mater  Res  B  Appl
               calcium phosphate biocement for bone regeneration. J R Soc   Biomater, 103: 21–30.
               Interface, 7: 1171–1180.
                                                                  https://doi.org/10.1002/jbm.b.33172
               https://doi.org/10.1098/rsif.2009.0559
                                                               72.  Gomes SR, Rodrigues G, Martins GG, et al., 2015, In vitro
            61.  Fazeli N, Arefian E, Irani S,  et al., 2021, 3D-printed PCL   and  in  vivo evaluation of electrospun nanofibers of PCL,
               scaffolds coated with nanobioceramics enhance osteogenic   chitosan and gelatin: A comparative study. Mater Sci Eng C,
               differentiation of stem cells. ACS Omega, 6: 35284–35296.   46: 348–358.
               https://doi.org/10.1021/acsomega.1c04015           https://doi.org/10.1016/j.msec.2014.10.051
            62.  Yang X, Wang Y, Zhou Y,  et  al., 2021, The application of   73.  Wang J, Witte F, Xi T, et al., 2015, Recommendation for modifying
               polycaprolactone in three-dimensional printing scaffolds for   current  cytotoxicity  testing  standards  for  biodegradable
               bone tissue engineering. Polymers (Basel), 13: 2754.   magnesium-based materials. Acta Biomater, 21: 237–249.
               https://doi.org/10.3390/polym13162754              https://doi.org/10.1016/j.actbio.2015.04.011
            63.  Liu D, Nie W, Li D,  et  al., 2019, 3D printed PCL/SrHA   74.  Dietrich E, Oudadesse H, Lucas‐Girot A,  et al., 2009,
               scaffold for enhanced bone regeneration.  Chem Eng J,   In vitro bioactivity of melt‐derived glass 46S6 doped with
               362: 269–279.                                      magnesium. J Biomed Mater Res A, 88: 1087–1096.
               https://doi.org/10.1016/j.cej.2019.01.015          https://doi.org/10.1002/jbm.a.31901
            64.  Park SA, Lee SJ, Seok JM,  et al., 2018, Fabrication of 3D   75.  Sader MS, LeGeros RZ, Soares GA, 2009, Human osteoblasts
               printed PCL/PEG polyblend scaffold using rapid prototyping   adhesion and proliferation on magnesium-substituted
               system for bone tissue engineering application. J Bionic Eng,   tricalcium phosphate dense tablets. J Mater Sci Mater Med,
               15: 435–442.                                       20: 521–527.
               https://doi.org/10.1007/s42235-018-0034-8          https://doi.org/10.1007/s10856-008-3610-3


            Volume 9 Issue 6 (2023)                        551                         https://doi.org/10.36922/ijb.0196
   554   555   556   557   558   559   560   561   562   563   564