Page 414 - v11i4
P. 414
International Journal of Bioprinting Bioprinted liver dECM/GelMA tumor model
4. Pan S, Sun Z, Zhao B, et al. Therapeutic application of doi: 10.1016/j.biotechadv.2022.107930
manganese-based nanosystems in cancer radiotherapy. 16. Levato R, Dudaryeva O, Garciamendez-Mijares CE,
Biomaterials. 2023;302:122321. et al. Light-based vat-polymerization bioprinting. Nat Rev
doi: 10.1016/j.biomaterials.2023.122321
Methods Primers. 2023;3(1):47.
5. Moy B, Rumble RB, Carey LA, for the Chemotherapy and doi: 10.1038/s43586-023-00231-0
Targeted Therapy for Endocrine-Pretreated or Hormone 17. Kumar S, Tharayil A, Thomas S. 3D bioprinting of nature-
Receptor–Negative Metastatic Breast Cancer Expert inspired hydrogel inks based on synthetic polymers. ACS
Panel. Chemotherapy and targeted therapy for endocrine- Appl Polym Mater. 2021;3(8):3685-3701.
pretreated or hormone receptor–negative metastatic breast doi: 10.1021/acsapm.1c00567
cancer: ASCO guideline rapid recommendation update.
JCO. 2023;41(6):1318-1320. 18. Yang K, Wang L, Vijayavenkataraman S, Yuan Y, Tan
doi: 10.1200/JCO.22.02807 ECK, Kang L. Recent applications of three-dimensional
bioprinting in drug discovery and development. Adv Drug
6. Garg V, Kumar L. Metronomic chemotherapy in ovarian Deliv Rev. 2024;214:115456.
cancer. Cancer Lett. 2023;579:216469. doi: 10.1016/j.addr.2024.115456
doi: 10.1016/j.canlet.2023.216469
19. Bian S, Hu X, Zhu H, et al. 3D bioprinting of artificial skin
7. Michalczyk K, Pawlik J, Czekawy I, Kozłowski M, Cymbaluk- substitute with improved mechanical property and regulated
Płoska A. Complementary methods in cancer treatment— cell behavior through integrating patterned nanofibrous
cure or curse? IJERPH. 2021;18(1):356. films. ACS Nano. 2024;18(28):18503-18521.
doi: 10.3390/ijerph18010356
doi: 10.1021/acsnano.4c04088
8. Li Y, Xu X. Nanomedicine solutions to intricate physiological- 20. Kronemberger GS, Spagnuolo FD, Karam AS, Chattahy
pathological barriers and molecular mechanisms of tumor K, Storey KJ, Kelly DJ. Rapidly degrading hydrogels to
multidrug resistance. J Control Release. 2020;323:483-501. support biofabrication and 3D bioprinting using cartilage
doi: 10.1016/j.jconrel.2020.05.007
microtissues. ACS Biomater Sci Eng. 2024;10(10):6441-6450.
9. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived doi: 10.1021/acsbiomaterials.4c00819
in vitro intrahepatic cholangiocarcinoma tumor model: 21. Pérez Del Río E, Rey-Vinolas S, Santos F, et al. 3D
establishment, evaluation and anti-cancer drug testing. printing as a strategy to scale-up biohybrid hydrogels
Biofabrication. 2020;12(4):045014. for T cell manufacture. ACS Appl Mater Interfaces.
doi: 10.1088/1758-5090/aba0c3
2024;16(38):50139-50146.
10. Xu X, Liu Y, Liu Y, et al. Functional hydrogels for doi: 10.1021/acsami.4c06183
hepatocellular carcinoma: Therapy, imaging, and in vitro 22. Pramanick A, Hayes T, Sergis V, McEvoy E, Pandit A, Daly
model. J Nanobiotechnol. 2024;22(1):381. AC. 4D bioprinting shape‐morphing tissues in granular
doi: 10.1186/s12951-024-02547-9
support hydrogels: Sculpting structure and guiding
11. Li W, Hu X, Yang S, et al. A novel tissue-engineered 3D maturation. Adv Funct Mater. 2025;35(5):2414559.
tumor model for anti-cancer drug discovery. Biofabrication. doi: 10.1002/adfm.202414559
2018;11(1):015004. 23. Patel ZH, Charania AA, Punjani Z, et al. Evaluating
doi: 10.1088/1758-5090/aae270
anticancer agents on 3D bioprinted organoid tumors (BOT)
12. Vitale S, Calapà F, Colonna F, et al. Advancements to reduce cost and accelerate therapeutic discovery. JCO.
in 3D in vitro models for colorectal cancer. Adv Sci. 2022;40(16_suppl):e13500.
2024;11(32):2405084. doi: 10.1200/JCO.2022.40.16_suppl.e13500
doi: 10.1002/advs.202405084
24. Kankala RK, Zhang YS, Kang L, Ambrosio L. Editorial:
13. Lv J, Du X, Wang M, Su J, Wei Y, Xu C. Construction of Polymeric microarchitectures for tissue regeneration and
tumor organoids and their application to cancer research drug screening. Front Bioeng Biotechnol. 2023;11:1144991.
and therapy. Theranostics. 2024;14(3):1101-1125. doi: 10.3389/fbioe.2023.1144991
doi: 10.7150/thno.91362
25. Wang Y, Jeon H. 3D cell cultures toward quantitative
14. Van Tienderen GS, Conboy J, Muntz I, et al. Tumor high-throughput drug screening. Trends Pharmacol Sci.
decellularization reveals proteomic and mechanical 2022;43(7):569-581.
characteristics of the extracellular matrix of primary liver doi: 10.1016/j.tips.2022.03.014
cancer. Biomater Adv. 2023;146:213289. 26. González-Callejo P, García-Astrain C, Herrero-Ruiz A,
doi: 10.1016/j.bioadv.2023.213289
et al. 3D bioprinted tumor-stroma models of triple-
15. Krujatz F, Dani S, Windisch J, et al. Think outside the box: negative breast cancer stem cells for preclinical targeted
3D bioprinting concepts for biotechnological applications therapy evaluation. ACS Appl Mater Interfaces. 2024;16(21):
– recent developments and future perspectives. Biotechnol 27151-27163.
Adv. 2022;58:107930. doi: 10.1021/acsami.4c04135
Volume 11 Issue 4 (2025) 406 doi: 10.36922/IJB025160142