Page 414 - v11i4
P. 414

International Journal of Bioprinting                               Bioprinted liver dECM/GelMA tumor model




            4.   Pan S, Sun Z, Zhao B, et al. Therapeutic application of      doi: 10.1016/j.biotechadv.2022.107930
               manganese-based  nanosystems  in  cancer  radiotherapy.   16.  Levato R, Dudaryeva O, Garciamendez-Mijares CE,
               Biomaterials. 2023;302:122321.                     et al. Light-based vat-polymerization bioprinting. Nat Rev
               doi: 10.1016/j.biomaterials.2023.122321
                                                                  Methods Primers. 2023;3(1):47.
            5.   Moy B, Rumble RB, Carey LA, for the Chemotherapy and      doi: 10.1038/s43586-023-00231-0
               Targeted Therapy for Endocrine-Pretreated or Hormone   17.  Kumar S, Tharayil A, Thomas S. 3D bioprinting of nature-
               Receptor–Negative  Metastatic  Breast  Cancer  Expert   inspired hydrogel inks based on synthetic polymers.  ACS
               Panel. Chemotherapy and targeted therapy for endocrine-  Appl Polym Mater. 2021;3(8):3685-3701.
               pretreated or hormone receptor–negative metastatic breast      doi: 10.1021/acsapm.1c00567
               cancer: ASCO guideline rapid recommendation update.
               JCO. 2023;41(6):1318-1320.                      18.  Yang K, Wang L, Vijayavenkataraman S, Yuan Y, Tan
               doi: 10.1200/JCO.22.02807                          ECK, Kang L. Recent applications of three-dimensional
                                                                  bioprinting in drug discovery and development. Adv Drug
            6.   Garg V, Kumar L. Metronomic chemotherapy in ovarian   Deliv Rev. 2024;214:115456.
               cancer. Cancer Lett. 2023;579:216469.              doi: 10.1016/j.addr.2024.115456
               doi: 10.1016/j.canlet.2023.216469
                                                               19.  Bian S, Hu X, Zhu H, et al. 3D bioprinting of artificial skin
            7.   Michalczyk K, Pawlik J, Czekawy I, Kozłowski M, Cymbaluk-  substitute with improved mechanical property and regulated
               Płoska A. Complementary methods in cancer treatment—  cell behavior through integrating patterned nanofibrous
               cure or curse? IJERPH. 2021;18(1):356.             films. ACS Nano. 2024;18(28):18503-18521.
               doi: 10.3390/ijerph18010356
                                                                  doi: 10.1021/acsnano.4c04088
            8.   Li Y, Xu X. Nanomedicine solutions to intricate physiological-  20.  Kronemberger  GS,  Spagnuolo  FD,  Karam  AS,  Chattahy
               pathological barriers and molecular mechanisms of tumor   K, Storey KJ, Kelly DJ. Rapidly degrading hydrogels to
               multidrug resistance. J Control Release. 2020;323:483-501.  support biofabrication and 3D bioprinting using cartilage
               doi: 10.1016/j.jconrel.2020.05.007
                                                                  microtissues. ACS Biomater Sci Eng. 2024;10(10):6441-6450.
            9.   Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived      doi: 10.1021/acsbiomaterials.4c00819
               in vitro intrahepatic cholangiocarcinoma tumor model:   21.  Pérez Del Río E, Rey-Vinolas S, Santos F, et al. 3D
               establishment, evaluation and anti-cancer drug testing.   printing as a strategy to scale-up biohybrid hydrogels
               Biofabrication. 2020;12(4):045014.                 for T cell manufacture.  ACS Appl Mater Interfaces.
               doi: 10.1088/1758-5090/aba0c3
                                                                  2024;16(38):50139-50146.
            10.  Xu X, Liu Y, Liu Y, et al. Functional hydrogels for      doi: 10.1021/acsami.4c06183
               hepatocellular carcinoma: Therapy, imaging, and in vitro   22.  Pramanick A, Hayes T, Sergis V, McEvoy E, Pandit A, Daly
               model. J Nanobiotechnol. 2024;22(1):381.           AC. 4D bioprinting shape‐morphing tissues in granular
               doi: 10.1186/s12951-024-02547-9
                                                                  support hydrogels: Sculpting structure and guiding
            11.  Li W, Hu X, Yang S, et al. A novel tissue-engineered 3D   maturation. Adv Funct Mater. 2025;35(5):2414559.
               tumor model for anti-cancer drug discovery. Biofabrication.      doi: 10.1002/adfm.202414559
               2018;11(1):015004.                              23.  Patel ZH, Charania AA, Punjani Z, et al. Evaluating
               doi: 10.1088/1758-5090/aae270
                                                                  anticancer agents on 3D bioprinted organoid tumors (BOT)
            12.  Vitale S, Calapà F, Colonna F, et al. Advancements   to reduce cost and accelerate therapeutic discovery.  JCO.
               in 3D in vitro models for colorectal cancer.  Adv Sci.   2022;40(16_suppl):e13500.
               2024;11(32):2405084.                               doi: 10.1200/JCO.2022.40.16_suppl.e13500
               doi: 10.1002/advs.202405084
                                                               24.  Kankala RK, Zhang YS, Kang L, Ambrosio L. Editorial:
            13.  Lv J, Du X, Wang M, Su J, Wei Y, Xu C. Construction of   Polymeric microarchitectures for tissue regeneration and
               tumor organoids and their application to cancer research   drug screening. Front Bioeng Biotechnol. 2023;11:1144991.
               and therapy. Theranostics. 2024;14(3):1101-1125.      doi: 10.3389/fbioe.2023.1144991
               doi: 10.7150/thno.91362
                                                               25.  Wang Y, Jeon H. 3D cell cultures toward quantitative
            14.  Van Tienderen GS,  Conboy J, Muntz  I, et  al.  Tumor   high-throughput drug screening.  Trends Pharmacol Sci.
               decellularization reveals proteomic and mechanical   2022;43(7):569-581.
               characteristics of the extracellular matrix of primary liver      doi: 10.1016/j.tips.2022.03.014
               cancer. Biomater Adv. 2023;146:213289.          26.  González-Callejo P, García-Astrain C, Herrero-Ruiz A,
               doi: 10.1016/j.bioadv.2023.213289
                                                                  et al. 3D bioprinted tumor-stroma models of triple-
            15.  Krujatz F, Dani S, Windisch J, et al. Think outside the box:   negative breast cancer stem cells for preclinical targeted
               3D bioprinting concepts for biotechnological applications   therapy evaluation. ACS Appl Mater Interfaces. 2024;16(21):
               – recent developments and future perspectives. Biotechnol   27151-27163.
               Adv. 2022;58:107930.                               doi: 10.1021/acsami.4c04135

            Volume 11 Issue 4 (2025)                       406                            doi: 10.36922/IJB025160142
   409   410   411   412   413   414   415   416   417   418   419