Page 89 - MSAM-2-4
P. 89

Materials Science in Additive Manufacturing                           Laser DED-produced Ti-6Mn-4Mo alloy



            10.  Tanji A, Gapsari F, Syahrom A, et al., 2021, Effect of Mo      https://doi.org/10.1016/j.msea.2022.144045
               addition on the pitting resistance of TiMn alloys in Hanks’   21.  Zadeh MK, Yeganeh M, Shoushtari MT,  et al., 2022,
               solution. J Alloys Compds, 871: 159582.
                                                                  Microstructure, corrosion behavior, and biocompatibility of
               https://doi.org/10.1016/j.jallcom.2021.159582      Ti-6Al-4 V alloy fabricated by LPBF and EBM techniques.
                                                                  Mater Today Commun, 31: 103502.
            11.  Santos P, Niinomi M, Liu H,  et al., 2016, Improvement
               of  microstructure,  mechanical  and  corrosion  properties      https://doi.org/10.1016/j.mtcomm.2022.103502
               of  biomedical Ti-Mn alloys by  Mo  addition.  Mater Des,
               110: 414–424.                                   22.  Xiang S, Yuan Y, Zhang C, et al., 2022, Effects of process
                                                                  parameters on the corrosion resistance and biocompatibility
               https://doi.org/10.1016/j.matdes.2016.07.115       of Ti6Al4V parts fabricated by selective laser melting. ACS
            12.  Lourenço ML, Cardoso GC, Sousa K,  et al., 2020,   Omega, 7: 5954–5961.
               Development of novel Ti-Mo-Mn alloys for biomedical      https://doi.org/10.1021/acsomega.1c06246
               applications. Sci Rep, 10: 6298.
                                                               23.  Vonavkova I, Vojtech D, Palousek D, 2020, Characterization
               https://doi.org/10.1038/s41598-020-62865-4         of  β-Ti alloy prepared by SLM method.  Manuf Technol,
            13.  Maitra V, Shi J, 2023, Evaluating the predictability of surface   20: 690–696.
               roughness of Ti–6Al–4V alloy from selective laser melting.   https://doi.org/10.21062/mft.2020.091
               Adv Eng Mater, 25: 2300075.
                                                               24.  Zhao D, Han C, Li J,  et al., 2020,  In situ fabrication of a
               https://doi.org/10.1002/adem.202300075             titanium-niobium alloy with tailored microstructures,
            14.  Shi J, Wang Y, 2020, Development of metal matrix composites   enhanced mechanical properties and biocompatibility by
               by laser-assisted additive manufacturing technologies:   using selective laser melting. Mater Sci Eng C, 111: 110784.
               A review. J Mater Sci, 55: 9883–9917.              https://doi.org/10.1016/j.msec.2020.110784
                https://doi.org/10.1007/s10853-020-04730-3     25.  Lu HZ, Ma HW, Luo X, et al., 2021, Microstructure, shape
            15.  Savinov R, Wang Y, Shi J, 2020, Microstructure and   memory properties, and in vitro biocompatibility of porous
               properties of CeO2-doped CoCrFeMnNi high entropy alloy   NiTi scaffolds fabricated via selective laser melting. J Mater
               fabricated by laser metal deposition.  J  Manuf Processes,   Res Technol, 15: 6797–6812.
               56: 1245–1251.                                     https://doi.org/10.1016/j.jmrt.2021.11.112
               https://doi.org/10.1016/j.jmapro.2020.04.018    26.  Batalha RL, Batalha WC, Deng L, et al., 2020, Processing
            16.  Wang J, Wang Y, Su Y,  et al., 2022, Evaluation of in-situ   a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser
               alloyed Inconel 625 from elemental powders by laser   melting. J Mater Res, 35: 1143–1153.
               directed energy deposition. Mater Sci Eng A, 830: 142296.   https://doi.org/10.1557/jmr.2020.90
               https://doi.org/10.1016/j.msea.2021.142296      27.  Ishimoto T, Ozasa R, Nakano K, et al., 2021, Development
            17.  Kosec T, Bajt Leban M, Ovsenik M, et al., 2022, Estimation of   of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-
               the corrosion properties for titanium dental alloys produced   solid solution by selective laser melting, and its improved
               by SLM. Mater Technol, 56: 429–435.                mechanical property and  biocompatibility.  Scr Mater,
                                                                  194: 113658.
               https://doi.org/10.17222/mit.2022.519
                                                                  https://doi.org/10.1016/j.scriptamat.2020.113658
            18.  Suresh S, Sun CN, Tekumalla S,  et al., 2021, Mechanical
               properties and  in vitro cytocompatibility of dense and   28.  Luo JP, Huang YJ, Xu JY,  et al., 2020, Additively
               porous Ti–6Al–4V ELI manufactured by selective laser   manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable
               melting technology for biomedical applications.  J  Mech   Young’s modulus: Mechanical property, biocompatibility,
               Behav Biomed Mater, 123: 104712.                   and proteomics analysis. Mater Sci Eng C Mater Biol Appl,
                                                                  114: 110903.
               https://doi.org/10.1016/j.jmbbm.2021.104712
                                                                   https://doi.org/10.1016/j.msec.2020.110903
            19.  Wang N, Dheen ST, Fuh JYH, et al., 2022, Biocompatibility
               and mechanical properties evaluation of Ti-6Al-4V lattice   29.  Chakkravarthy  V,  Jose  SP,  Lakshmanan  M,  et al.,  2022,
               structures with varying porosities. Key Eng Mater, 923: 21–29.   Additive manufacturing of novel Ti-30Nb-2Zr biomimetic
                                                                  scaffolds for successful limb salvage.  Mater Today Proc,
               https://doi.org/10.4028/p-64o0e4
                                                                  64: 1711–1716.
            20.  Tseng  SF,  Wang  IH,  Chang  CM,  et al.,  2022,  Mechanical   https://doi.org/10.1016/j.matpr.2022.05.469
               characteristic comparison of additively manufactured
               Ti-6Al-4V  lattice structures  in biocompatible bone  tissue   30.  Challis VJ, Xu X, Halfpenny A, et al., 2023, Understanding
               growth. Mater Sci Eng A, 857: 144045.              the effect of microstructural texture on the anisotropic


            Volume 2 Issue 4 (2023)                         12                      https://doi.org/10.36922/msam.2180
   84   85   86   87   88   89   90   91   92   93   94