Page 90 - MSAM-2-4
P. 90

Materials Science in Additive Manufacturing                           Laser DED-produced Ti-6Mn-4Mo alloy



               elastic properties of selective laser melted Ti-24Nb-4Zr-8Sn.      https://doi.org/10.1016/j.jallcom.2017.05.299
               Acta Mater, 254: 119021.
                                                               40.  Alshammari Y, Yang F, Bolzoni L, 2019, Mechanical
                https://doi.org/10.1016/j.actamat.2023.119021     properties and microstructure of Ti-Mn alloys produced
                                                                  via powder metallurgy for biomedical applications. J Mech
            31.  Wolff S, Lee T, Faierson E, et al., 2016, Anisotropic properties
               of directed energy deposition (DED)-processed Ti–6Al–4V.   Behav Biomed Mater, 91: 391–397.
               J Manuf Processes, 24: 397–405.                    https://doi.org/10.1016/j.jmbbm.2018.12.005
               https://doi.org/10.1016/j.jmapro.2016.06.020    41.  Salahinejad E, Hadianfard MJ, Macdonald DD, et al., 2013,
                                                                  In vitro electrochemical corrosion and cell viability studies
            32.  Ivanov S, Gushchina  M, Artinov  A, et al., 2021, Effect of
               elevated temperatures on the mechanical properties of a   on nickel-free stainless steel orthopedic implants. PLoS One,
               direct laser deposited Ti-6Al-4V. Materials, 14: 6432.   8: e61633.
                                                                  https://doi.org/10.1371/journal.pone.0061633
               https://doi.org/10.3390/ma14216432
                                                               42.  Savinov R, Wang Y, Shi J, 2023, Evaluation of microstructure,
            33.  Tan H, Guo M, Clare AT, et al., 2019, Microstructure and
               properties of  Ti-6Al-4V  fabricated by low-power pulsed   mechanical properties, and corrosion resistance for
               laser directed energy deposition.  J  Mater Sci Technol,   Ti-doped inconel 625 alloy produced by laser directed
               35: 2027–2037.                                     energy deposition. Mater Sci Eng A, 884: 145542.
                                                                   https://doi.org/10.1016/j.msea.2023.145542
               https://doi.org/10.1016/j.jmst.2019.05.008
                                                               43.  Chandramohan P, Bhero S, Obadele BA, et al., 2017, Laser
            34.  Shalnova SA, Gushchina MO, Strekalovskaya DA,  et  al.,
               2022, Electrochemical properties of the heat-treated   additive manufactured Ti-6Al-4V alloy: Tribology and
               Ti-6Al-4V alloy manufactured by direct energy deposition.   corrosion studies. Int J Adv Manuf Technol, 92: 3051–3061.
               J Alloys Compds, 899: 163226.                      https://doi.org/10.1007/s00170-017-0410-2
               https://doi.org/10.1016/j.jallcom.2021.163226   44.  Zhou X, Xu D, Geng S, et al., 2021, Mechanical properties,
                                                                  corrosion behavior and cytotoxicity of Ti-6Al-4V alloy
            35.  Gong X, Yabansu YC, Collins PC, et al., 2020, Evaluation
               of Ti-Mn alloys for additive manufacturing using high-  fabricated by laser metal deposition. Mater Characterization,
               throughput experimental assays and Gaussian process   179: 111302.
               regression. Materials (Basel), 13: 4641.           https://doi.org/10.1016/j.matchar.2021.111302
               https://doi.org/10.3390/ma13204641              45.  Coakley JA, Vorontsov VA, Jones N, et al., 2015, Precipitation
                                                                  processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr.
            36.  Yang R, Liu Z, Yang G, et al., 2012, Study of the Ti-20 wt. %
               Mo composite coating prepared by laser cladding. Procedia   J Alloys Compd, 646: 946–953.
               Eng, 36: 355–359.                                  https://doi.org/10.1016/j.jallcom.2015.05.251
               https://doi.org/10.1016/j.proeng.2012.03.052    46.  Kao YH, Tu GC, Huang CA, et al., 2005, A study on the
                                                                  hardness variation of α- and β-pure titanium with different
            37.  Kang N, Lin X, Mansori ME, et al., 2020, On the effect of
               the thermal cycle during the directed energy deposition   grain sizes. Mater Sci Eng A, 398: 93–98.
               application to the  in-situ production of a Ti-Mo alloy      https://doi.org/10.1016/j.msea.2005.03.004
               functionally graded structure. Addit Manuf, 31: 100911.
                                                               47.  Jadhav S, Powar A, Patil S,  et al., 2017, Effect of volume
               https://doi.org/10.1016/j.addma.2019.100911        fraction of alpha and transformed beta on the high cycle
                                                                  fatigue properties of bimodal Ti6Al4V alloy. IOP Conf Ser,
            38.  Zhan H, Ceguerra AV, Wang G, et al., 2018, Precipitation of
               string-shaped morphologies consisting of aligned α phase in   201: 012035.
               a metastable β titanium alloy. Sci Rep, 8: 2038.      https://doi.org/10.1088/1757-899x/201/1/012035
               https://doi.org/10.1038/s41598-018-20386-1      48.  Iijima Y, Nagase T, Matsugaki A, et al., 2021, Design and
                                                                  development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys
            39.  Wang CH, Liu M, Hu P, et al., 2017, The effects of α″ and
               ω phases on the superelasticity and shape memory effect of   for metallic biomaterials. Mater Des, 202: 109548.
               binary Ti-Mo alloys. J Alloys Compd, 720: 488–496.      https://doi.org/10.1016/j.matdes.2021.109548












            Volume 2 Issue 4 (2023)                         13                      https://doi.org/10.36922/msam.2180
   85   86   87   88   89   90   91   92   93   94   95