Page 90 - MSAM-2-4
P. 90
Materials Science in Additive Manufacturing Laser DED-produced Ti-6Mn-4Mo alloy
elastic properties of selective laser melted Ti-24Nb-4Zr-8Sn. https://doi.org/10.1016/j.jallcom.2017.05.299
Acta Mater, 254: 119021.
40. Alshammari Y, Yang F, Bolzoni L, 2019, Mechanical
https://doi.org/10.1016/j.actamat.2023.119021 properties and microstructure of Ti-Mn alloys produced
via powder metallurgy for biomedical applications. J Mech
31. Wolff S, Lee T, Faierson E, et al., 2016, Anisotropic properties
of directed energy deposition (DED)-processed Ti–6Al–4V. Behav Biomed Mater, 91: 391–397.
J Manuf Processes, 24: 397–405. https://doi.org/10.1016/j.jmbbm.2018.12.005
https://doi.org/10.1016/j.jmapro.2016.06.020 41. Salahinejad E, Hadianfard MJ, Macdonald DD, et al., 2013,
In vitro electrochemical corrosion and cell viability studies
32. Ivanov S, Gushchina M, Artinov A, et al., 2021, Effect of
elevated temperatures on the mechanical properties of a on nickel-free stainless steel orthopedic implants. PLoS One,
direct laser deposited Ti-6Al-4V. Materials, 14: 6432. 8: e61633.
https://doi.org/10.1371/journal.pone.0061633
https://doi.org/10.3390/ma14216432
42. Savinov R, Wang Y, Shi J, 2023, Evaluation of microstructure,
33. Tan H, Guo M, Clare AT, et al., 2019, Microstructure and
properties of Ti-6Al-4V fabricated by low-power pulsed mechanical properties, and corrosion resistance for
laser directed energy deposition. J Mater Sci Technol, Ti-doped inconel 625 alloy produced by laser directed
35: 2027–2037. energy deposition. Mater Sci Eng A, 884: 145542.
https://doi.org/10.1016/j.msea.2023.145542
https://doi.org/10.1016/j.jmst.2019.05.008
43. Chandramohan P, Bhero S, Obadele BA, et al., 2017, Laser
34. Shalnova SA, Gushchina MO, Strekalovskaya DA, et al.,
2022, Electrochemical properties of the heat-treated additive manufactured Ti-6Al-4V alloy: Tribology and
Ti-6Al-4V alloy manufactured by direct energy deposition. corrosion studies. Int J Adv Manuf Technol, 92: 3051–3061.
J Alloys Compds, 899: 163226. https://doi.org/10.1007/s00170-017-0410-2
https://doi.org/10.1016/j.jallcom.2021.163226 44. Zhou X, Xu D, Geng S, et al., 2021, Mechanical properties,
corrosion behavior and cytotoxicity of Ti-6Al-4V alloy
35. Gong X, Yabansu YC, Collins PC, et al., 2020, Evaluation
of Ti-Mn alloys for additive manufacturing using high- fabricated by laser metal deposition. Mater Characterization,
throughput experimental assays and Gaussian process 179: 111302.
regression. Materials (Basel), 13: 4641. https://doi.org/10.1016/j.matchar.2021.111302
https://doi.org/10.3390/ma13204641 45. Coakley JA, Vorontsov VA, Jones N, et al., 2015, Precipitation
processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr.
36. Yang R, Liu Z, Yang G, et al., 2012, Study of the Ti-20 wt. %
Mo composite coating prepared by laser cladding. Procedia J Alloys Compd, 646: 946–953.
Eng, 36: 355–359. https://doi.org/10.1016/j.jallcom.2015.05.251
https://doi.org/10.1016/j.proeng.2012.03.052 46. Kao YH, Tu GC, Huang CA, et al., 2005, A study on the
hardness variation of α- and β-pure titanium with different
37. Kang N, Lin X, Mansori ME, et al., 2020, On the effect of
the thermal cycle during the directed energy deposition grain sizes. Mater Sci Eng A, 398: 93–98.
application to the in-situ production of a Ti-Mo alloy https://doi.org/10.1016/j.msea.2005.03.004
functionally graded structure. Addit Manuf, 31: 100911.
47. Jadhav S, Powar A, Patil S, et al., 2017, Effect of volume
https://doi.org/10.1016/j.addma.2019.100911 fraction of alpha and transformed beta on the high cycle
fatigue properties of bimodal Ti6Al4V alloy. IOP Conf Ser,
38. Zhan H, Ceguerra AV, Wang G, et al., 2018, Precipitation of
string-shaped morphologies consisting of aligned α phase in 201: 012035.
a metastable β titanium alloy. Sci Rep, 8: 2038. https://doi.org/10.1088/1757-899x/201/1/012035
https://doi.org/10.1038/s41598-018-20386-1 48. Iijima Y, Nagase T, Matsugaki A, et al., 2021, Design and
development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys
39. Wang CH, Liu M, Hu P, et al., 2017, The effects of α″ and
ω phases on the superelasticity and shape memory effect of for metallic biomaterials. Mater Des, 202: 109548.
binary Ti-Mo alloys. J Alloys Compd, 720: 488–496. https://doi.org/10.1016/j.matdes.2021.109548
Volume 2 Issue 4 (2023) 13 https://doi.org/10.36922/msam.2180

