Page 99 - MSAM-4-1
P. 99
Materials Science in Additive Manufacturing Additive manufacturing of NASA HR-1 angled walls
16. Standard Test Method for Sieve Analysis of Metal Powders. Available doi: 10.1007/s40684-020-00302-7
from: https://compass.astm.org/document/?contentcode=ast 26. Layer J, Adler T, Ahmed R, et al. Failure analysis and
m%7cb0214-16%7cen-us&proxycl=https%3a%2f%2fsecure. prevention. In: ASM INTERNATIONAL® Publication
astm.org&fromlogin=true [Last accessed on 2024 Jan 11]. Information and Contributors. Vol 11. Ohio: ASM
17. Standard Test Methods for Flow Rate of Metal Powders Using International® The MaterialsInformation Society; 2002.
the Hall Flowmeter Funnel. Available from: https://compass. 27. Lasalmonie A, Strudel JL. Influence of grain size on the
astm.org/document/?contentCode=ASTM%7CB0213- mechanical behaviour of some high strength materials.
20%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm. J Mater Sci. 1986;21(6):1837-1852.
org&fromLogin=true [Last accessed on 2024 Feb 29].
doi: 10.1007/BF00547918
18. Schneider CA, Rasband WS, Eliceiri KW. NIH Image
to ImageJ: 25 years of image analysis. Nat Methods. 28. Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects
2012;9(7):671-675. on mechanical properties in metal additive manufacturing:
A review focusing on X-ray tomography insights. Mater Des.
doi: 10.1038/nmeth.2089 2020;187:108385.
19. Standard Test Methods for Determining Average Grain Size. doi: 10.1016/j.matdes.2019.108385
Available from: https://www.astm.org/e0112-13r21.html
[Last accessed on 2024 Jan 10]. 29. Frölich F, Bechtloff L, Scheuring BM, et al. Evaluation
of mechanical properties characterization of additively
20. Standard Test Methods for Tension Testing of Metallic manufactured components. Prog Addit Manuf.
Materials. Available from: https://compass.astm. 2024;10:1217-1229.
org/document/?contentCode=ASTM%7CE0008-
04%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm. doi: 10.1007/s40964-024-00700-2
org&fromLogin=true [Last accessed on 2024 Jan 11]. 30. Bagnoli DL, Banerji K, Boardman B, et al. Fractography.
21. Standard Test Method for Strain-Controlled Fatigue In: ASM INTERNATIONAL ® The Materials Information
Testing. Available from: https://compass.astm.org/ Company. Vol 12. Ohio: ASM International® The
document/?contentCode=ASTM%7CE0606_E0606M- MaterialsInformation Society; 1987.
21%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm. 31. Komarasamy M, Shukla S, Williams S, Kandasamy K, Kelly
org&fromLogin=true [Last accessed on 2024 Jan 11]. S, Mishra RS. Microstructure, fatigue, and impact toughness
properties of additively manufactured nickel alloy 718.
22. E28 Committee. Practice for Instrumented Indentation Testing.
ASTM International; 2023. Available from: https://www. Addit Manuf. 2019;28:661-675.
astm.org/e2546-15.html [Last accessed on 2024 Jan 11]. doi: 10.1016/j.addma.2019.06.009
23. Grima Cintas P, Marco-Almagro L, Tort-Martorell Llabres J. 32. Zhao B, Song J, Xie L, Hu Z, Chen J. Surface roughness effect
Industrial Statistics with Minitab. United States: Wiley; 2012. on fatigue strength of aluminum alloy using revised stress
field intensity approach. Sci Rep. 2021;11(1):19279.
24. Brennan MC, Keist JS, Palmer TA. Defects in metal
additive manufacturing processes. J Mater Eng Perform. doi: 10.1038/s41598-021-98858-0
2021;30(7):4808-4818. 33. Javidi A, Rieger U, Eichlseder W. The effect of machining
doi: 10.1007/s11665-021-05919-6 on the surface integrity and fatigue life. Int J Fatigue.
2008;30(10-11):2050-2055.
25. Ahn DG. Directed energy deposition (DED) process: State of
the art. Int J Precis Eng Manuf-Green Technol. 2021;8(2):703-742. doi: 10.1016/j.ijfatigue.2008.01.005
Volume 4 Issue 1 (2025) 11 doi: 10.36922/msam.8069

