Page 99 - MSAM-4-1
P. 99

Materials Science in Additive Manufacturing                  Additive manufacturing of NASA HR-1 angled walls



            16.  Standard Test Method for Sieve Analysis of Metal Powders. Available      doi: 10.1007/s40684-020-00302-7
               from: https://compass.astm.org/document/?contentcode=ast  26.  Layer J, Adler T, Ahmed R,  et al. Failure analysis and
               m%7cb0214-16%7cen-us&proxycl=https%3a%2f%2fsecure.  prevention. In:  ASM INTERNATIONAL® Publication
               astm.org&fromlogin=true [Last accessed on 2024 Jan 11].  Information  and Contributors.  Vol  11.  Ohio:  ASM
            17.  Standard Test Methods for Flow Rate of Metal Powders Using   International® The MaterialsInformation Society; 2002.
               the Hall Flowmeter Funnel. Available from: https://compass.  27.  Lasalmonie A, Strudel JL. Influence of grain size on the
               astm.org/document/?contentCode=ASTM%7CB0213-       mechanical behaviour of some high strength materials.
               20%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.      J Mater Sci. 1986;21(6):1837-1852.
               org&fromLogin=true [Last accessed on 2024 Feb 29].
                                                                  doi: 10.1007/BF00547918
            18.  Schneider CA, Rasband WS, Eliceiri KW. NIH Image
               to ImageJ: 25  years of image analysis.  Nat Methods.   28.  Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects
               2012;9(7):671-675.                                 on mechanical properties in metal additive manufacturing:
                                                                  A review focusing on X-ray tomography insights. Mater Des.
               doi: 10.1038/nmeth.2089                            2020;187:108385.
            19.  Standard Test Methods for Determining Average Grain Size.      doi: 10.1016/j.matdes.2019.108385
               Available from: https://www.astm.org/e0112-13r21.html
               [Last accessed on 2024 Jan 10].                 29.  Frölich F, Bechtloff L, Scheuring BM,  et al. Evaluation
                                                                  of mechanical properties characterization of additively
            20.  Standard Test Methods for Tension Testing of Metallic   manufactured  components.  Prog  Addit  Manuf.
               Materials.  Available  from:  https://compass.astm.  2024;10:1217-1229.
               org/document/?contentCode=ASTM%7CE0008-
               04%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.      doi: 10.1007/s40964-024-00700-2
               org&fromLogin=true [Last accessed on 2024 Jan 11].  30.  Bagnoli DL, Banerji K, Boardman B,  et al. Fractography.
            21.  Standard Test Method for Strain-Controlled Fatigue   In:  ASM INTERNATIONAL  ® The Materials Information
               Testing.  Available  from:  https://compass.astm.org/  Company. Vol  12. Ohio: ASM International® The
               document/?contentCode=ASTM%7CE0606_E0606M-         MaterialsInformation Society; 1987.
               21%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.   31.  Komarasamy M, Shukla S, Williams S, Kandasamy K, Kelly
               org&fromLogin=true [Last accessed on 2024 Jan 11].  S, Mishra RS. Microstructure, fatigue, and impact toughness
                                                                  properties of additively manufactured nickel alloy 718.
            22.  E28 Committee. Practice for Instrumented Indentation Testing.
               ASTM International;   2023. Available from: https://www.  Addit Manuf. 2019;28:661-675.
               astm.org/e2546-15.html [Last accessed on 2024 Jan 11].     doi: 10.1016/j.addma.2019.06.009
            23.  Grima Cintas P, Marco-Almagro L, Tort-Martorell Llabres J.   32.  Zhao B, Song J, Xie L, Hu Z, Chen J. Surface roughness effect
               Industrial Statistics with Minitab. United States: Wiley; 2012.  on fatigue strength of aluminum alloy using revised stress
                                                                  field intensity approach. Sci Rep. 2021;11(1):19279.
            24.  Brennan MC, Keist JS, Palmer TA. Defects in metal
               additive manufacturing processes.  J  Mater Eng Perform.      doi: 10.1038/s41598-021-98858-0
               2021;30(7):4808-4818.                           33.  Javidi A, Rieger U, Eichlseder W. The effect of machining
               doi: 10.1007/s11665-021-05919-6                    on the surface integrity and fatigue  life.  Int  J Fatigue.
                                                                  2008;30(10-11):2050-2055.
            25.  Ahn DG. Directed energy deposition (DED) process: State of
               the art. Int J Precis Eng Manuf-Green Technol. 2021;8(2):703-742.     doi: 10.1016/j.ijfatigue.2008.01.005























            Volume 4 Issue 1 (2025)                         11                             doi: 10.36922/msam.8069
   94   95   96   97   98   99   100   101   102   103   104