Page 393 - IJB-9-5
P. 393

International Journal of Bioprinting                                       Vascularized bone regeneration



            19.  Richter RF, Ahlfeld T, Gelinsky M, et al., 2023, Composites   29.  Tang F, Li J, Xie W, et al., 2021, Bioactive glass promotes the
               consisting of calcium phosphate cements and mesoporous   barrier functional behaviors of keratinocytes and improves
               bioactive glasses as a 3D plottable drug delivery system. Acta   the Re-epithelialization in wound healing in diabetic rats.
               Biomater, 156: 146–157.                            Bioact Mater, 6(10): 3496–3506.
               https://doi.org/10.1016/j.actbio.2022.01.034       https://doi.org/10.1016/j.bioactmat.2021.02.041
            20.  Wu L, Pei X, Zhang B, et al., 2023, 3D-printed HAp bone   30.  Schumacher M, Habibovic P, van Rijt S, 2021, Mesoporous
               regeneration scaffolds enable nano-scale manipulation of   bioactive glass composition effects on degradation and
               cellular mechanotransduction signals.  Chem Eng J, 455:   bioactivity. Bioact Mater, 6(7): 1921–1931.
               140699.                                            https://doi.org/10.1016/j.bioactmat.2020.12.007
               https://doi.org/10.1016/j.cej.2022.140699       31.  Chai Y, Lin D, Ma Y, et al., 2017, RhBMP-2 loaded MBG/
            21.  Autefage H, Allen F, Tang HM, et al., 2019, Multiscale   PEGylated poly(glycerol sebacate) composite scaffolds for
               analyses reveal native-like lamellar bone repair and near   rapid bone regeneration.  J Mater Chem B, 5(24): 4633–
               perfect bone-contact with porous strontium-loaded   4647.
               bioactive glass. Biomaterials, 209: 152–162.       https://doi.org/10.1039/c7tb00505a

               https://doi.org/10.1016/j.biomaterials.2019.03.035  32.  Ding X, Shi J, Wei J, et al., 2021, A biopolymer hydrogel
                                                                  electrostatically  reinforced  by  amino-functionalized
            22.  Zhang M, Zhai X, Ma T, et al., 2023, Sequential therapy for
               bone regeneration by cerium oxide-reinforced 3D-printed   bioactive glass for accelerated bone regeneration. Sci Adv,
               bioactive glass scaffolds. ACS Nano, 17(5): 4433–4444.  7(50): eabj7857.
                                                                  https://doi.org/10.1126/sciadv.abj7857
               https://doi.org/10.1021/acsnano.2c09855
                                                               33.  Lin D, Cai B, Wang L, et al., 2021, A viscoelastic PEGylated
            23.  Li  S,  Zhang  L,  Liu  C, et al.,  2023,  Spontaneous   poly(glycerol sebacate)-based bilayer scaffold for cartilage
               immunomodulation and regulation of angiogenesis and   regeneration in full-thickness osteochondral defect (vol 253,
               osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement   120095, 2020). Biomaterials, 253: 120095.
               to repair critical bone defects. Bioact Mater, 23: 101–117.
                                                                  https://doi.org/10.1016/j.biomaterials.2020.120618
               https://doi.org/10.1016/j.bioactmat.2022.10.021
                                                               34.  Ma LL, Zhou YL, Zhang ZWB, et al., 2020, Multifunctional
            24.  Zhu H, Zheng K, Boccaccini AR, 2021, Multi-functional   bioactive Nd-Ca-Si glasses for fluorescence thermometry,
               silica-based mesoporous materials for simultaneous delivery   photothermal therapy, and burn tissue repair. Sci Adv, 6(32):
               of biologically active ions and therapeutic biomolecules.   eabb1311.
               Acta Biomater, 129: 1–17.
                                                                  https://doi.org/10.1126/sciadv.abb1311
               https://doi.org/10.1016/j.actbio.2021.05.007
                                                               35.  Liu Y, Ma Y, Zhang J,  et  al., 2017, MBG-modified
            25.  Zhu H, Monavari M, Zheng K, et al., 2022, 3D bioprinting of   beta-TCP scaffold promotes mesenchymal stem cells
               multifunctional dynamic nanocomposite bioinks incorporating   adhesion and osteogenic differentiation via a FAK/MAPK
               Cu-doped mesoporous bioactive glass nanoparticles for bone   signaling pathway.  ACS Appl Mater Interfaces, 9(36):
               tissue engineering. Small, 18(12): e2104996.       30283–30296.
               https://doi.org/10.1002/smll.202104996             https://doi.org/10.1021/acsami.7b02466
            26.  Niu HY, Ma YF, Wu GY, et al., 2021, Multicellularity-  36.  Zhou M, Li B, Li N, et al., 2022, Regulation of Ca2+ for
               interweaved bone regeneration of BMP-2-loaded scaffold   cancer cell apoptosis through photothermal conjugated
               with orchestrated kinetics of resorption and osteogenesis   nanoparticles. ACS Appl Bio Mater, 5(6): 2834–2842.
               (vol 216, 119216, 2019). Biomaterials, 216: 119216.  https://doi.org/10.1021/acsabm.2c00236
               https://doi.org/10.1016/j.biomaterials.2020.120376  37.  Gu J, Zhang Q, Geng M, et al., 2021, Construction of
            27.  Zhou Y, Wu C, Chang J, 2019, Bioceramics to regulate stem   nanofibrous scaffolds with interconnected perfusable
               cells and their microenvironment for tissue regeneration.   microchannel networks for engineering of vascularized
               Mater Today, 24(C): 41–56.                         bone tissue. Bioact Mater, 6(10): 3254–3268.
                                                                  https://doi.org/10.1016/j.bioactmat.2021.02.033
               https://doi.org/10.1016/j.mattod.2018.07.016
                                                               38.  Zhang C, Li T, Yin S, et al., 2022, Monocytes deposit
            28.  Ma H, Feng C, Chang J, et al., 2018, 3D-printed bioceramic
               scaffolds: From bone tissue engineering to tumor therapy.   migrasomes to promote embryonic angiogenesis. Nat Cell
               Acta Biomater, 79: 37–59.                          Biol, 24(12): 1726.
                                                                  https://doi.org/10.1038/s41556-022-01026-3
               https://doi.org/10.1016/j.actbio.2018.08.026

            Volume 9 Issue 5 (2023)                        385                         https://doi.org/10.18063/ijb.767
   388   389   390   391   392   393   394   395   396   397   398