Page 393 - IJB-9-5
P. 393
International Journal of Bioprinting Vascularized bone regeneration
19. Richter RF, Ahlfeld T, Gelinsky M, et al., 2023, Composites 29. Tang F, Li J, Xie W, et al., 2021, Bioactive glass promotes the
consisting of calcium phosphate cements and mesoporous barrier functional behaviors of keratinocytes and improves
bioactive glasses as a 3D plottable drug delivery system. Acta the Re-epithelialization in wound healing in diabetic rats.
Biomater, 156: 146–157. Bioact Mater, 6(10): 3496–3506.
https://doi.org/10.1016/j.actbio.2022.01.034 https://doi.org/10.1016/j.bioactmat.2021.02.041
20. Wu L, Pei X, Zhang B, et al., 2023, 3D-printed HAp bone 30. Schumacher M, Habibovic P, van Rijt S, 2021, Mesoporous
regeneration scaffolds enable nano-scale manipulation of bioactive glass composition effects on degradation and
cellular mechanotransduction signals. Chem Eng J, 455: bioactivity. Bioact Mater, 6(7): 1921–1931.
140699. https://doi.org/10.1016/j.bioactmat.2020.12.007
https://doi.org/10.1016/j.cej.2022.140699 31. Chai Y, Lin D, Ma Y, et al., 2017, RhBMP-2 loaded MBG/
21. Autefage H, Allen F, Tang HM, et al., 2019, Multiscale PEGylated poly(glycerol sebacate) composite scaffolds for
analyses reveal native-like lamellar bone repair and near rapid bone regeneration. J Mater Chem B, 5(24): 4633–
perfect bone-contact with porous strontium-loaded 4647.
bioactive glass. Biomaterials, 209: 152–162. https://doi.org/10.1039/c7tb00505a
https://doi.org/10.1016/j.biomaterials.2019.03.035 32. Ding X, Shi J, Wei J, et al., 2021, A biopolymer hydrogel
electrostatically reinforced by amino-functionalized
22. Zhang M, Zhai X, Ma T, et al., 2023, Sequential therapy for
bone regeneration by cerium oxide-reinforced 3D-printed bioactive glass for accelerated bone regeneration. Sci Adv,
bioactive glass scaffolds. ACS Nano, 17(5): 4433–4444. 7(50): eabj7857.
https://doi.org/10.1126/sciadv.abj7857
https://doi.org/10.1021/acsnano.2c09855
33. Lin D, Cai B, Wang L, et al., 2021, A viscoelastic PEGylated
23. Li S, Zhang L, Liu C, et al., 2023, Spontaneous poly(glycerol sebacate)-based bilayer scaffold for cartilage
immunomodulation and regulation of angiogenesis and regeneration in full-thickness osteochondral defect (vol 253,
osteogenesis by Sr/Cu-borosilicate glass (BSG) bone cement 120095, 2020). Biomaterials, 253: 120095.
to repair critical bone defects. Bioact Mater, 23: 101–117.
https://doi.org/10.1016/j.biomaterials.2020.120618
https://doi.org/10.1016/j.bioactmat.2022.10.021
34. Ma LL, Zhou YL, Zhang ZWB, et al., 2020, Multifunctional
24. Zhu H, Zheng K, Boccaccini AR, 2021, Multi-functional bioactive Nd-Ca-Si glasses for fluorescence thermometry,
silica-based mesoporous materials for simultaneous delivery photothermal therapy, and burn tissue repair. Sci Adv, 6(32):
of biologically active ions and therapeutic biomolecules. eabb1311.
Acta Biomater, 129: 1–17.
https://doi.org/10.1126/sciadv.abb1311
https://doi.org/10.1016/j.actbio.2021.05.007
35. Liu Y, Ma Y, Zhang J, et al., 2017, MBG-modified
25. Zhu H, Monavari M, Zheng K, et al., 2022, 3D bioprinting of beta-TCP scaffold promotes mesenchymal stem cells
multifunctional dynamic nanocomposite bioinks incorporating adhesion and osteogenic differentiation via a FAK/MAPK
Cu-doped mesoporous bioactive glass nanoparticles for bone signaling pathway. ACS Appl Mater Interfaces, 9(36):
tissue engineering. Small, 18(12): e2104996. 30283–30296.
https://doi.org/10.1002/smll.202104996 https://doi.org/10.1021/acsami.7b02466
26. Niu HY, Ma YF, Wu GY, et al., 2021, Multicellularity- 36. Zhou M, Li B, Li N, et al., 2022, Regulation of Ca2+ for
interweaved bone regeneration of BMP-2-loaded scaffold cancer cell apoptosis through photothermal conjugated
with orchestrated kinetics of resorption and osteogenesis nanoparticles. ACS Appl Bio Mater, 5(6): 2834–2842.
(vol 216, 119216, 2019). Biomaterials, 216: 119216. https://doi.org/10.1021/acsabm.2c00236
https://doi.org/10.1016/j.biomaterials.2020.120376 37. Gu J, Zhang Q, Geng M, et al., 2021, Construction of
27. Zhou Y, Wu C, Chang J, 2019, Bioceramics to regulate stem nanofibrous scaffolds with interconnected perfusable
cells and their microenvironment for tissue regeneration. microchannel networks for engineering of vascularized
Mater Today, 24(C): 41–56. bone tissue. Bioact Mater, 6(10): 3254–3268.
https://doi.org/10.1016/j.bioactmat.2021.02.033
https://doi.org/10.1016/j.mattod.2018.07.016
38. Zhang C, Li T, Yin S, et al., 2022, Monocytes deposit
28. Ma H, Feng C, Chang J, et al., 2018, 3D-printed bioceramic
scaffolds: From bone tissue engineering to tumor therapy. migrasomes to promote embryonic angiogenesis. Nat Cell
Acta Biomater, 79: 37–59. Biol, 24(12): 1726.
https://doi.org/10.1038/s41556-022-01026-3
https://doi.org/10.1016/j.actbio.2018.08.026
Volume 9 Issue 5 (2023) 385 https://doi.org/10.18063/ijb.767

